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Abstract
Large language models (LLM) have sparked significant impact with
regard to both intelligence and productivity. In recent years, a
great surge has been witnessed in the introduction of both com-
mercial and open-source LLMs. Many businesses have adopted the
LLMs into their applications to solve their own domain-specific
tasks. However, integrating LLMs into specific business scenarios
requires more than just utilizing the models themselves. Instead,
it is a systematic process that involves substantial components,
which are collectively referred to as the LLM supply chain. The
LLM supply chain inherently carries risks. Therefore, it is essential
to understand the types of components that may be introduced
into the supply chain and the associated risks, enabling different
stakeholders to implement effective mitigation measures. While
some literature discusses risks associated with LLMs, there is cur-
rently no paper that clearly outlines the LLM supply chain from
the perspective of both providing and consuming its components.
As LLMs have become essential infrastructure in the new era, we
believe that a thorough review of the LLM supply chain, along
with its inherent risks and mitigation strategies, would be valuable
for industry practitioners to avoid potential damages and losses,
and enlightening for academic researchers to rethink existing ap-
proaches and explore new avenues of research. Our paper provides
a comprehensive overview of the LLM supply chain, detailing the
stakeholders, composing artifacts, and the supplying types. We
developed taxonomies of risk types, risky actions, and mitigations
related to various supply chain stakeholders and components. In
summary, our work explores the technical and operational aspects
of the LLM supply chain, offering valuable insights for researchers
and engineers in the evolving LLM landscape.

1 Introduction
The large language models (LLMs) have sparked unprecedented
discussion about the power of generative language models, show-
casing their remarkable ability to understand human-written text,

embody vast knowledge, and generate responses based on user
instructions. In 2023 following ChatGPT’s debut, there has been
a significant surge in the development and introduction of large
language models, regarding both commercial LLMs and free open-
source LLMs. Researchers and practitioners have extended the ca-
pabilities of LLMs beyond natural language processing, applying
them in fields like software engineering, finance, and education,
dramatically reshaping these areas [7, 29, 89].

Integrating LLMs involves more than just utilizing the models
themselves. On one hand, although some applications may directly
employ commercial LLMs, they still require extra solutions for pre-
processing (e.g., Promptify [34] for prompt engineering, and GPT-
Cache [33] for reducing LLM API call expenses), post-processing
(e.g., filtering out unwanted content), integration (e.g., integrating
with websites, servers, or mobile apps), and plugin interactions (e.g.,
Zapier [35] for linking with external apps). On the other hand, busi-
nesses may prefer open-source LLMs to enable flexible customiza-
tions, which demand more sophisticated components, during stages
such as pre-training, model reusing, fine-tuning (e.g., Labelbox [55]),
model conversion (e.g., Onnx [75]), quantization (e.g., TensorRT
[74]) and deployment. Behind the directly used components, there
exists a multitude of sub-components that are transitively depended
upon, further increasing the overall dependency complexity. Fur-
thermore, the supplying types in the LLM supply chain are more
varied than in traditional software supply chains. Data and mod-
els introduce additional supply types, including partial data reuse,
model parameter reuse through data augmentation, fine-tuning,
etc. Overall, leveraging LLMs is a systematic process that entails
numerous components and supplying types across multiple stages,
collectively referred to as the LLM supply chain.

Accordingly, the risks in the LLM supply chain have been signif-
icantly amplified due to an expanded attack surface and a growing
number of participants. For stakeholders, it is essential to under-
stand their providers and clients, how their artifacts are served,
the risks associated with them, and the mitigation measures that
are required. While the LLM supply chain shares similarities with
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the well-recognized open-source software supply chain [56], it also
exhibits its uniqueness. For instance, attackers can exploit publicly
accessible LLMs through prompt engineering to extract sensitive
information (e.g., privacy leakage) or fine-tune open-source LLMs
[27] to embed malicious instructions within the model (e.g., back-
door attacks). Therefore, a comprehensive understanding of the
types of components and supplying types in the LLM supply chain,
thus to understand their corresponding risks is crucial to enable
stakeholders to implement effective mitigation strategies.

While some literature discusses risks associated with LLMs, there
is currently no paper that clearly outlines the LLM supply chain
from the perspective of both providing and consuming its com-
ponents. As a result, the inherent risks and potential mitigation
strategies are less organized and comprehensive. Ladisa et al. [56]
developed taxonomies for attack and defense techniques in soft-
ware supply chains. However, their taxonomies do not account
for LLM-specific components such as pre-trained LLMs, prompts,
and data, making their survey less attractive for LLM supply chain
stakeholders. Several surveys address the security and privacy chal-
lenges [19, 26, 54, 70, 121, 121] and discuss the defense and miti-
gation strategies of LLMs. However, they did not explore which
stakeholders and artifacts are affected, which may limit the ability
to provide actionable insights and a clear scope for the relevant
stakeholders. Additionally, Wang et al. [112] were among the first
to outline a research agenda for the LLM supply chain. They high-
lighted the key components in the LLM supply chain, illustrating
them through the interactions within MLOps and DevOps. As the
topic is still emerging and rapidly evolving, existing works may not
comprehensively incorporate insightful ideas and perspectives from
online preprints or web blogs. Therefore, we believe that a compre-
hensive LLM supply chain overview as well as a taxonomy of risks
and clear guidance of mitigation in the LLM supply chain could
be beneficial for both industrial and academic audiences. It could
guide practitioners to pay attention to the LLM supply chain risks
and provide a visionary map for academic researchers to devise
new mitigation or defensive techniques.

In our paper, we provide a comprehensive overview of the LLM
supply chain, detailing the stakeholders, composing artifacts, and
the supplying types, as illustrated in Figure 1. Our definition of the
LLM supply chain differs fromWant et al.’s work [112] in emphasiz-
ing the LLM supply chain more on the basic components and their
supply relationships between them. We developed taxonomies of
risk types, risky actions, and mitigations related to various LLM
supply chain stakeholders and components. Specifically, we fist
holistically collected both academic and online resources. Then, we
summarize the risk scenarios as stakeholders performing risky ac-
tions on specific supply chain components, which in turn lead to dis-
tinct risk types. We illustrate the risk scenarios from the perspective
of upstream contributors, downstream users, and administrators.
Furthermore, we list the types of various mitigation measures in
response to the LLM supply chain risks.

Our paper explores the technical and operational aspects of the
LLM supply chain, offering a holistic understanding that draws valu-
able insights for researchers and engineers in software engineering,
system architecture, software security, and data governance. The
main contributions of our paper are as follows:

• Wepresented a comprehensive overview of the LLM supply chain,
including artifacts, stakeholders, and supplying types.

• We develop a detailed taxonomy of risk and mitigations with
regard to stakeholders, risk types and supply chain artifacts,
providing actionable guidance for practitioners involved in the
LLM supply chain.

• We envision future challenges and opportunities in securing the
LLM supply chain.

2 Large Language Model Supply Chain
We first provide our definition for the large language model supply
chain. Then, we detail the stakeholders and composing components
involved in the LLM supply chain, and provide a description of
the LLM development stages. Lastly, we compare our work with
existing surveys relevant to the LLM supply chain.

2.1 Definition
We present an overview of the large language model supply chain
in Figure 1. While it may not capture the entire landscape exhaus-
tively, we have aimed to make it as comprehensive as possible.
The large language model (LLM) supply chain encompasses the
ecosystem and sequence of processes integral to developing, train-
ing, deploying, and distributing applications that leverage large
language models. This supply chain includes:
• Stakeholders in various roles. Stakeholders take different roles
based on the specific supply artifact and action. For instance,
they may include developers contributing to the artifacts, orga-
nizations managing the platforms, or vendors providing cloud
computing services.

• Upstream artifacts in multiple forms. Upstream artifacts are those
on which downstream applications have dependencies on. For
example, these artifacts may include plaintext source code, binary
executables, or serialized models.

• Diverse supply relationships. As artifacts vary, the types of supply
relationships differ. For instance, they may include augmentation
relationships for data, cloning relationships for code, andmerging
relationships for models.

• Development stages for various purposes. The development stages
include a comprehensive scope for LLM application. e.g., data pre-
processing, model pre-training, fine-tuning, integration, delivery,
monitoring, and feedback.

2.2 Composing Components
We summarize five components in the LLM supply chain, i.e., stake-
holder, artifact, toolchain, platform, and LLM applications (apps).

2.2.1 Stakeholders. We summarize four roles of stakeholders in the
LLM supply chain, i.e., contributors, consumers, administrators, and
user. Note that we categorize the stakeholders as roles because an
individual can occupy a single role or assume multiple roles simul-
taneously, such as being both an contributor and an administrator
in an open-source package platform.

Contributors. We collectively refer to contributors engaged in
development activities and sharing artifacts, such as data, models,
prompts, or third-party libraries, as contributors. Their roles vary
depending on the types of artifacts they contribute.
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Figure 1: Overview of the Large Language Model Supply Chain

• Platform Contributors are responsible for contributing to host-
ing platforms (e.g., hosting artifacts), hardware platforms, and
serving platforms (i.e., Google Cloud [18], Amazon Web Services
[91]). They are obligated to provided secure, stable, isolated, and
managed environments. i.e., malicious content detection, safe
system images, authorized cloud accounts, etc.

• Artifact Contributors collect, process, and upload various forms of
data, code, prompts, and models to the hosting platforms. They
can be data engineers, model developers, prompt engineers, and
library developers.

• Toolchain Contributors are responsible for developing, maintain-
ing, and improving the tools used throughout the model life-
cycle. e.g., Jupyter, TensorFlow for model development, Jenkins,
GitHub Actions in CI/CD.They ensure that these tools are reliable,
scalable, and compatible with the requirements from Toolchain
Consumers.

Consumers.We distinguish consumers depending on their con-
suming components, including platform consumers, artifact con-
sumers, toolchain consumers, and app consumers.

• Platform Consumers are entities that use the platform infrastruc-
ture for various purposes, such as accessing hosting services,
utilizing computational resources, or interacting with serving
platforms for deploying and running models and applications.

• Artifact Consumers are those who utilize the artifacts produced
and shared within the platform. This includes data sets, code,
prompts, and models.

• Toolchain Consumers are individuals or teams that leverage the
toolchain components for developing, deploying, and maintain-
ing models. They use model development, CI/CD, and deploy-
ment tools to streamline the lifecycle of models and applications.

• App Consumers are end-users or other systems that interact with
applications built using the platform’s resources and artifacts.

Users. The users of LLM applications perform interactions with
LLM applications in various forms. Their feedbacks (explicitly or
implicitly) may be collected back to the LLM application.

Administrators. We summarize administrators as platform ad-
ministrators and apps administrators.

• Platform Administrator include two sub roles. The platform ad-
ministrators manage and oversee the infrastructure, ensuring the
system’s operational integrity, security, and performance. The
project administrators, on the other hand, focus on managing
repositories of artifacts, such as data repositories, model reposito-
ries, prompt repositories/websites, and library repositories. They
hold the privileges to merge pull requests, manage versioning,
and onboard new contributors.

• Apps Administrator is responsible for managing the lifecycle of
applications that rely on the artifacts and models within the
platform. This includes deploying, configuring, and monitoring
applications.

2.2.2 Artifacts. The LLM supply chain artifacts include data, model,
prompts and code.

Data. Data serves as the foundational element in the workflow.
It can be augmented and preprocessed from the original data to
improve its quality, ensuring it is ready for use in training and
fine-tuning the model. Retrieval methods bring in relevant data
from various sources, facilitating the prompt generation process.
They can be used as the data for pre-training or fine-tuning, or as
the knowledge database for retrieval augmented generation.

Model. The model represents the large language model that is
trained and fine-tuned using the processed data and instructions
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from the prompt. The model may be adjusted or modified by split-
ting, merging, serializing, or deserializing components as needed
to optimize performance. It generates predictions or outputs based
on the prompts used as the instructs.

Prompt. The prompt is crafted to instruct the model effectively,
guiding it on what information to retrieve, process, or generate.
Prompts can be refined to adapt to specific scenarios, leading to
more accurate or tailored instructions that improve model outputs.

Code. The code encompasses the software and scripts utilized
for data processing, model training, and prompt refinement. This
includes code that directly invokes relevant library APIs, as well as
the libraries themselves as dependencies. The code can be cloned
for customization to enhance compatibility and functionality.

2.2.3 Platforms. The platforms are publicly accessible websites
that provide essential infrastructure and services for distributing,
and deploying various components of the LLM ecosystem.

Hosting Platform. These platforms facilitate the storage, shar-
ing, and versioning of software packages, models, data, and related
resources required for LLM development and deployment. e.g.,Data
Hosting Platforms (e.g., Kaggle [63] for datasets), Model Hosting
Platforms (e.g., Hugging Face [28] for pre-trained models), Repos-
itory Hosting Platforms (e.g., GitHub [32] for code repositories),
Package Registries (e.g., PyPI [30] for Python packages, Debian [83]
for Linux packages), Plugin Marketplaces (e.g., Visual Studio Mar-
ketplace [67] for development tools), and Prompt Sharing Platforms
where users can share and discover prompt engineering techniques.

Hardware Platform. These platforms consist of specialized
hardware designed to optimize the performance of LLMs. They in-
clude dedicated chips and accelerators (e.g., NVIDIA GPUs, Google
TPUs) that provide the computational power necessary to handle
large datasets and complex models, reducing training time and
improving efficiency in deployment.

Serving Platform. These platforms offer cloud-based services to
support the training, deployment, and maintenance of LLMs. They
include Cloud Computing Platforms that provide scalable comput-
ing resources, such as Google Cloud [18] and AmazonWeb Services
[91]. These platforms allow users to leverage high-performance
infrastructure, including GPUs and TPUs, for intensive tasks like
model training and inference.

2.2.4 Toolchain. We discuss the relevant toolchain with regard to
model development toolchain, model deployment toolchain, and
CI/CD toolchain.

Model Development Toolchain. Tools used for training or
fine-tuning the LLMs. If an attacker implants malicious code in
these tools, it could lead to corrupted models or abnormal outputs.
Environment Image is the base environment (e.g.,Docker containers)
in which the model runs could be compromised, affecting system
security or performance. Model Serializer and Deserializer save
or load models. If compromised, they could modify the model’s
internal state or introduce backdoors.

Model Deployment Toolchain. Tools specifically used for cre-
ating and deploying LLMs. Any manipulation or vulnerabilities
here could compromise the model’s behavior or safety.Model Quan-
tization Tool reduce the size of the deployment model, making it
more efficient. If compromised, these tools could degrade model
performance or introduce malicious behavior. Model Conversion

Data 
pre-processing

Model
pre-training

FMs
preparation

Prompt 
engineering

Model
finetuning

Model
compression

Model 
integration

Model
conversion

Model 
serving

Model 
monitoring
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governance

Preparation Training Deployment Delivery

Figure 2: Large Language Model Development Stages

Tool converts models between formats or versions. A poisoned con-
version process could lead to abnormal model behavior or failures.

CI/CD Toolchain. Continuous Integration/Continuous Deploy-
ment systems that automate the software delivery process. A com-
promised CI/CD pipeline could introduce vulnerabilities during
model updates.

2.2.5 Applications. Applications provide functionalities and ser-
vices directly used by users. These applications include chatbots,
web applications, intelligent agents, text-generation tools, andmore.
Application developers integrate large models into real-world prod-
ucts to develop intelligent applications with API interfaces. For
example, the LLM plugin store can offer a wide range of customiz-
able plugins that allow developers to easily access and implement
various functionalities tailored to specific needs. This ecosystem is
examined in detail in Zhao et al.’s forward-looking analysis of the
LLM app store [128].

2.3 Model Development Lifecycle
Figure 2 illustrates the four essential stages of the large language
model (LLM) lifecycle. Each stage includes specific processes cru-
cial to building, deploying, and maintaining LLMs effectively. In
the Preparation stage, foundational work is completed, including
data pre-processing to clean and organize raw data, foundation
model (FM) preparation to set up initial models, and prompt en-
gineering to guide model outputs effectively. These steps ensure
that the inputs are optimized for subsequent stages. The Training
stage focuses on developing the model’s capabilities. Here, model
pre-training introduces the model to large datasets, enabling it to
understand language patterns. This is followed by fine-tuning on
specific tasks to enhance accuracy and model compression to opti-
mize the model for efficient deployment. In the Deployment stage,
the trained model is integrated into real-world applications. This
involves model integration to embed the LLM within applications,
model conversion to make it compatible with different systems,
and model serving to set up scalable infrastructure for user interac-
tions. Finally, the Delivery stage ensures the ongoing performance
and governance of the model. Model monitoring is conducted to
track performance and detect issues, model maintenance includes
regular updates and retraining to retain effectiveness, and model
governance oversees the ethical and regulatory aspects, ensuring
compliance and responsible usage.

2.4 Related Surveys
We conducted a survey of the security aspects of large language
models (LLMs). Specifically, we gathered 12 surveys from our litera-
ture collection (see Section 3.1) that discuss various security-related
topics, including LLM risks, privacy challenges, adversarial attacks,
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and defenses. For ease of comparison, we categorized the topics
into two main areas: attacks and risks and defensive techniques. Ad-
ditionally, we unified the terminology and definitions across the
surveys to enable a clearer comparison.

Attack and Risks. In the context of attacks and risks, the Out-
put Risk is extensively covered in eight survey papers, which refers
to the potential for LLMs to generate harmful, untruthful, halluci-
natory, or unhelpful content. Following this, Privacy Attacks are
another major concern, with nine papers addressing various as-
pects such as membership inference attacks, privacy leakage (e.g.,
PPI) attacks, gradient leakage attacks, model inversion attacks, and
attribute inference attacks. Besides, Prompts Attack is covered in
7 papers, including prompt injection attack and jailbreaking at-
tack. Unfortunately, only a few papers [19, 81] mention Toolchain
Attacks. Yao et al. [121] discuss Supply Chain Vulnerabilities, and
Wu et al. [116] highlight issues like malicious webtool misuse and
cross-session access, which are closely related but account for a
subset of Toolchain Attacks. Therefore, the topic of toolchain attacks
was not explored in depth. Finally, only Neel et al. [70] addressed
the issue of Copyright Risks.

Defenses and Mitigation. Defenses and Mitigation are sug-
gested in accordance with the corresponding attacks and risks. For
Prompt Attacks, existing works propose Input Sanitization [46, 81].
To mitigate Output Risk, approaches like Output Sanitization are
recommended by several studies [19, 54, 121]. For Data Attacks, the
literature suggests techniques such as Data Cleaning [121], Data
De-duplication [70], and Data Sanitization [26]. However, these de-
fensive techniques are not well-summarized across the surveyed
works. While some methods, such as Differential Privacy, Federated
Learning, or LLM Alignment, refer to specific technical measures
designed to defend against particular attacks or mitigate associated
risks, other defensive measures are less detailed. For instance, strate-
gies like Output Detection and Input Sanitization are suggested to
address Output Risk and Prompt Attacks, respectively, but they lack
in-depth technical details on how these defenses are implemented.

Comparison to Existing Surveys. Our paper contributes the
following contributions which are novel and incremental to exist-
ing surveys. First, we conducted a comprehensive survey in both
academic literature and online resources regarding the open-source
LLM supply chain. Second, we provide a comprehensive overview
and highlight the key stakeholders and components in the LLM sup-
ply chain. Third, we summarize the risk scenarios as stakeholders
performing risk actions on specific supply chain components, as well
as risk types. We illustrate the risk scenarios from the perspective of
three major stakeholders. Furthermore, we list the types of various
mitigation measures in response to the LLM supply chain risks.

3 Methodology
In this section, we elaborate the methodology for our study. The
overview of our methodology is presented in Figure 3.

3.1 Literature Collection
We focused our literature collection on academic literature and
online resources. It helps to cover a comprehensive scope for our
study. On the one hand, academic literature provides a rigorous
understanding of the risks and mitigations in the LLM supply chain.

Academic Literature

Cited
Paper

Citing
Paper

Initial Paper Querying

Paper
Snowballing

Collected Academic literature

Online Resource

Referenced
Website

Keyword
Searching

Initial Resource Crawling

Resource
Snowballing

Collected Online Resource

Literature Sets

Literature Analysis and Taxonomy Construction

Refining

Risk Taxonomy Mitigation Taxonomy

Open Card Sorting Taxonomy Construction

Literature Collection

Figure 3: Approach Overview of our Literature Review

On the other hand, online resources provide real-time, validated
observations and practical examples that reflect current real-world
practices.

3.1.1 Academic Literature Collection. The academic literature col-
lection consists of two phases. First, we collected the initial papers
set by querying with keywords that are central to our topic. Sec-
ond, we expanded the paper set using the snowballing technique,
incorporating both the references cited by the initial set and the
papers that cite them.

Initial Paper Set.Two PhD students with over five years of expe-
rience in software supply chain management and two PhD students
with over three years in LLM security have engaged in the process.
Specifically, they first collected keywords from three domains. i.e.,
supply chain security (e.g., security, attack, malware, threat, vulnera-
bilities), LLM security (e.g., data poisoning, data provenance, model
poisoning) and LLM DevOps (e.g., data validation, model validation,
model evaluation). The remaining participants cross-checked the
keywords, and together they compiled the final comprehensive set.
Afterwards, we constructed queries based on the following rules
using the advanced search interface on Google Scholar.

(LLM security AND supply chain security)
OR (LLM security AND LLM DevOps) OR
(supply chain security AND LLM DevOps)
OR LLM security

Furthermore, we excluded papers that do not align with the
goal of our study. First, we filter out papers published before 2018.
Second, we exclude short papers with fewer than 2 pages. Finally, we
manually review the remaining papers to assess their relevance to
the large language model supply chain. Consequently, this process
leaves us with 127 papers.

Snowballed Paper Set. We identified cited and citing papers
from the initial set, with each new group of relevant papers forming
the basis for the next round of reviews. This iterative process con-
tinued until we reached a point where no new relevant papers were
found. Ultimately, this process led us to a final set of 313 papers.

3.1.2 Online Resource Collection. In addition to collecting scientific
literature, we have also gathered online resources which often
include real-world attacks or the latest knowledge not yet covered
by scientific literature.

Table 1 lists the websites where we collected online resources.We
chose these websites for their wide coverage, reputation in the field
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Table 1: Websites of Online Resource

Websites Link

Google https://www.google.com/
MITRE ALTAS https://atlas.mitre.org/
GitHub Blog https://github.blog/
JFrog https://jfrog.com/blog
Sonatype https://www.sonatype.com/blog
Synk https://snyk.io/blog/
Tencent Security https://security.tencent.com/index.php/blog
Hacker News https://thehackernews.com/
Checkmarx https://checkmarx.com/blog/
Check Point https://blog.checkpoint.com/
BleepingComputer https://www.bleepingcomputer.com/news/security
The Register https://www.theregister.com/security
Security Intelligence https://securityintelligence.com/news/
heise https://securityintelligence.com/news/
SC Magazine https://www.scmagazine.com/

of cybersecurity, professionalism, timely updates, and authoritative
information. On the one hand, we leverage the same keywords used
in the academic literature collection on the websites containing
querying interfaces. e.g., Google. On the other hand, we manually
inspect the websites to collect the relevant news or events.

3.2 Literature Analysis and Taxonomy
Construction

We manually inspected and categorized various elements of large
language model risks and mitigations from the literature. First, we
used open card sorting in our analysis. We began by thoroughly
reviewing the literature set, and identified and highlighted terms,
concepts, techniques, and strategies related to the large language
model risks and mitigations.

We performed hierarchical tree structure construction, where we
connected the identified categories into a structured, hierarchical
framework that reflects the relationships between different risks
and mitigation elements. We organize these categories into tree
structures where the root represents the risks, stakeholders, and
mitigations. To ensure accuracy and comprehensiveness, we refine
our summarized structures according to the following criteria with
multiple iterations.

• Mutual Exclusivity. Assess whether each node is distinct from
the others.

• Accuracy.Verify the precision of node descriptions by consulting
attack case studies and expert feedback, ensuring alignment with
real-world attack patterns.

• Hierarchy. Evaluate whether the tree’s structure is logical, en-
suring broader attack categories at higher levels and specific
methods at lower levels.

• Comprehensibility.Test the clarity of node descriptions through
expert panels or user feedback, ensuring that they are easy to
understand.

• Relevance. Ensure that each node reflects the latest risks and
mitigations by reviewing recent research and industry standards
(e.g., CVE, CWE, MITRE ATT&CK).

• Coverage. Check whether the node includes all known attack
techniques for its type, comparing against existing security frame-
works and databases.

Each node in the structures is assessed by the four professionals
independently. The structures are refined and re-evaluated itera-
tively until all professionals reach a final agreement.

4 Risks of Large Language Model Supply Chain
In this section, we summarize the risks in the LLM supply chain
through illustrative risk scenarios. The scenarios are presented
as risky stakeholders performing risky actions on specific supply
chain components, which in turn lead to distinct risk types. We first
discuss the risky stakeholders. Then, we study the risk types. Next, we
propose the taxonomy of risky actions in the large language model
supply chain. The risky stakeholders are detailed in the Section 2.2.1
and the supply chain components are covered in the Section 2.2. The
risky actions are illustrated in Section 4.2 and the risk types are
illustrated in Section 4.3. We present the risk scenarios regarding
Risky Contributors, Risky Consumers, Risky Administrators and Risky
Users in Figure 5, 6, 8 and 7, respectively.

4.1 Risky Stakeholders
We discuss the risky stakeholders in terms of risky contributors,
risky consumers, risky administrators and risky users.
• Risky Contributors.

- Camouflage Contributors. These contributors attempt to blend
in with legitimate contributors, possibly hiding their true inten-
tions.
- Attack Contributors. This group actively seeks to compromise

the system by injecting malicious code, data, or models into the
supply chain.
- Being Benign Contributors. Contributors in this category in-

troduce vulnerabilities unintentionally, either through poor cod-
ing practices, lack of maintenance, or other factors that increase
system risk.

• Risky Consumers.
- Being Middleman. Entities that act as intermediaries, facili-

tating the exchange or integration of supply chain components
between contributors and other consumers.
- Being Artifact Consumer . These stakeholders use artifact (e.g.,

data) for training, analytics, or other purposes.
- Being Platform Consumer . Entities that rely on platforms

built with supply chain components, such as development or
deployment environments.

• Risky Administrators.
- Attack Administrators. Attackers can hack into an adminis-

trator’s account, causing severe consequences given the elevated
privileges and control administrators hold over systems.
- Being benign administrators.Administrators who despite hav-

ing good intentions, inadvertently introduce risks into the system
through misconfigurations or other unintentional actions.

• Risky Users.Users can be risky if their purposes are to exploit LLM
application vulnerabilities, steal models, conduct jailbreaking or
inference attacks, perform excessive access, or pollute the data
using user feedbacks.

4.2 Risk Types
The LLM supply chain risks are classified into four main types.
i.e., Security Risks, Privacy Risks, Delivery Risks, and Legal Risks.
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Figure 4: Risk Types

Figure 4 provides a comprehensive overview of the LLM supply
chain risks across security, privacy, operational, and legal domains.
• Security Risks (SR) include potential threats such as hacker use
(SR1), system compromise (SR2), and the emergence of abnormal
content (SR3) that could disrupt systems or compromise integrity.

• Privacy Risks (PR) focus on data vulnerabilities, such as data
leakage (PR1), personally identifiable information (PII) leakage
(PR2), model stealing (PR3), code leakage (PR4), and prompt leak-
age (PR5), all of which can result in the unauthorized access or
misuse of sensitive information.

• Delivery Risks (DR) highlight issues related to the performance
and maintenance of services, including performance degradation
(DR1), system unmaintenance (DR2), and denial of service (DoS)
(DR3) attacks that hinder service availability.

• Legal Risks (LR) emphasize complications arising from copy-
right disputes, license disputes (LR1), and malicious use (LR2) of
systems, which can lead to legal and compliance challenges.

4.3 Taxonomy of Risky Actions
We present the taxonomy of LLM supply chain risks with regard to
the six composing elements in the LLM supply chain.

4.3.1 Risks on Code. The code, including packages, frameworks,
and plugins, have become essential at every stage of LLM appli-
cation development. However, using these libraries comes with
potential risks.

Implant Malicious Code. Attackers can develop malicious
code and attempt to implant it through various methods, finally
integrating it into the LLM supply chain. For instance, Zhao et al.
[127] revealed 9 malicious dataset loading scripts on Hugging Face,
and perform root cause analysis of vulnerable formats. It can cause
the risk of malicious use (LR2).
• Dependency Confusion. A dependency confusion attack is a type
of supply chain attack where an attacker publishes a malicious
package to a public package repository with the same name as
a popular private package. The package manager may unknow-
ingly download the malicious package from the public repository
instead of the intended private repository [85].

• Typosquatting. Using typosquatting or combosquatting, attackers
uploadmalicious packages with names that are nearly identical to
popular legitimate packages. A minor typographical error during
package installation can result in the inclusion of malicious code
in the application. For example, PyPI has suffered from numerous
malicious typosquatting packages. These malicious packages can
lead to the leakage of Personally Identifiable Information (PII)
and compromise the integrity and security of systems [12]. Rokon
et al. [88] identified over 7,500 instances of malware hosted on
GitHub. Attackers may also employ more covert methods, such
as spreading malware through forks [9].

• Compromising Legitimate Libraries. Attackers may target legit-
imate libraries already integrated into the LLM supply chain,
leveraging their established presence and substantial user base.
Attackers can conceal their malicious code within pull requests,
subtly injecting harmful elements into the codebase. In addition,
attackers may take control of the code from a previous maintainer
and release new malicious versions [45].

• Sharing Cloud Environments. Attackers can inject malicious code
into cloud environments and make it publicly available to all
cloud users. The rise in popularity of containers (e.g., Docker)
has accelerated the trend of deploying applications in cloud en-
vironments. However, it in turn has become a hugely popular
attack vector recently. The research team discovered that over a
thousand Docker container images were found hiding malicious
content [17]. Tomar et al. [106] proposed a taxonomy of potential
attacks at the container layer, revealing different types of threats
that can arise within containerized environments.

4.3.2 Risks on Dataset. The datasets play a fundamental role, pro-
viding the extensive data required for model training, model refin-
ing and prompt generation.

Implant Poisoned Data. Attackers can create poisoned data
and implant it through various methods, with the aim of having it
used during critical stages of building the LLM supply chain. It can
cause the risk of data leakage (PR1) and malicious use (LR2).

• Data Poisoning. Attackers can manipulate the data for malicious
purposes, and then upload it to public platforms (e.g.,Kaggle) [64].
Given that training large language models requires vast amounts
of data, it is highly likely that these poisoned data sets will be used
by LLM model developers. If the poisoned data is unintentionally
leveraged into the LLM supply chain, it would result in the model
performance degradation, particularly in its ability to generate
the outputs accurately and efficiently [92, 95, 110]. Alexander et
al. [109] demonstrated that with only 100 poisoning examples,
LLM produces consistent negative results or vulnerability output
across hundreds of tasks.

• RAG Poisoning. Retrieval-augmented generation (RAG) is widely
incorporated in the LLM supply chain to provide the LLM with
sufficient contextual knowledge. Similarly, the knowledge data-
base can also be poisoned, where it can be manipulated the guide
the LLM to generate specific, attacker-chosen responses to par-
ticular questions. Zou et al. [131] proposed PoisonedRAG, which
specifically focuses on injecting poisoned texts into knowledge
databases to steer language models to respond with predefined
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Figure 5: Risky Actions, Supply Chain Components and Risk Types Introduced by Risky Contributors

answers to questions selected by the attacker. Wang et al. intro-
duce the concept of Poisoned-LangChain [113], a novel indirect
attack that exploits a poisoned external knowledge base.

4.3.3 Risks on Models. The open-source models provide accessi-
bility, flexibility, and transparency, allowing developers to modify,
customize, and integrate them into various projects.

Implant Model Backdoors. Attackers can manipulate publicly
accessible models to alter their behavior for malicious purposes,
ultimately affecting downstream users who rely on the compro-
mised models. LLM may be composed of multiple components,
including vocabularies, tokenizers, embedding layers, and auxiliary
models (e.g., CLIP-ViT), etc [13, 62, 86]. It can cause hacker use
(SR1), system compromise (SR2), emergence of abnormal content
(SR3), privacy risk (PR), data leakage (PR1), personally identifiable
information (PII) leakage (PR2), model stealing (PR3), code leakage
(PR4), and prompt leakage (PR5).

• Component Dependency Attack. Attackers can manipulate the
contents or structures of the composing models of LLMs, thereby
conducting component dependency attacks. Huang et al.[44]
firstly explore howmanipulating the embedding dictionary using
carefully designed rules could cause the model to produce specific
outputs. Additionally, Cui et al.[20] and Shayegani et al. [93]
demonstrated that LLMs are not robust against attacks targeting
the visual models used exclusively in multi-modal LLMs.

• Backdoor attack. Backdoor attack embeds hidden backdoors in
the model during the training process, allowing the compromised
model to perform normally on benign samples but altered on the

hidden backdoor input [16, 60, 80]. Yao et al. and Cai et al. [8,
120] studied the vulnerability of prompt learning algorithms
commonly used in LLM to backdoor attacks.

Inference Attack. Inference attacks are types of privacy attack
targeting data, where the responses of LLM models may inadver-
tently leak sensitive information, leading to unauthorized access,
intellectual property theft, and privacy breaches. They include at-
tribute inference attacks and membership inference attacks. At-
tribute inference attacks involve deducing sensitive information
(e.g., race, gender, and sexual orientation) from the behavior or
responses of LLM models, even if such information is not explicitly
included in the training data. Robin et al. [99] and Pan et al. [79]
conducted systematic studies on various advanced large language
models, which have shown that LLMs can accurately infer sensitive
data such as identity, genome, healthcare, and location information
without any prior knowledge. Membership inference attacks aim
to predict whether a data sample was included in the training data
of LLM, undermining the trust between data providers and users.
Mattern et al. [65] explored the significant threat of membership
inference in the real-world using neighborhood comparison. It can
cause data leakage (PR1), personally identifiable information (PII)
leakage (PR2), model stealing (PR3), code leakage (PR4), and prompt
leakage (PR5).

Model Stealing.Model stealing refers to attacks where an ad-
versary attempts to extract sensitive information about a machine
learning model (e.g., model gradients, training data, and model
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parameters), thereby compromising the model’s privacy. It encom-
passes various model privacies, including gradient leakage [39],
training data extraction [119, 122, 126], and model information ex-
traction [10]. It not only infringes the intellectual property rights
of the model owner but also leads to security risks. For example,
adversaries can create shadow models via model stealing, which
are then used to generate adversarial examples, reverse-engineer
sensitive data used in model training [79], or bypass any access
restrictions or usage limitations in the original model [94]. It can
cause the privacy risk of model stealing (PR3).

Regarding LLMs, several model-stealing attacks have been re-
ported to be effective [82, 119, 126]. Li et al. and Yu et al. [11, 122]
conducted experiments to investigate the effectiveness of training
data extraction on LLMs. Truong et al. [107] proposed techniques
from the domain of data-free knowledge transfer to perform model
extraction, successfully replicating the capabilities of the original
model. Carlini et al. [10] demonstrated precise and significant infor-
mation extraction from black-box generative language models by
recovering the embedding projection layer of a transformer model,
given typical API access.

4.3.4 Risks on Prompts. Since LLMs are typically built from general
knowledge, prompts are an effective way to incorporate domain-
specific insights, directly enhancing the quality, relevance, and
accuracy of the model’s output. The shared prompts allow a wider
community to contribute and share specialized knowledge. How-
ever, shared prompts present several risks. In the context of shared
prompts, those jailbreak prompts can be maliciously leveraged and
pose challenges to the security mechanism of existing LLMs.

Implant Poisoned Prompts. Implanting poisoned prompts
deliberately inserting harmful or misleading prompts into pub-
licly accessible repositories or datasets. These poisoned prompts
can be designed to manipulate the behavior of large language
models (LLMs) by influencing their output in undesirable ways.
Since shared prompts are widely shared and reused, such poisoned
prompts can easily propagate through the supply chain, leading
to inaccurate, biased, or even harmful model responses for down-
stream users who incorporate them into their applications. It can
cause the performance degradation (DR1) of dilivery risks.
• Prompt injection. Prompt injection is a type of attack that exploits
malicious prompt words with trusted prompts against LLM ap-
plications. By exploiting the incapability of distinguishing “good”
and “bad” prompts, prompt injection can cause malicious inputs
to affect the model’s behavior and output, leading to information
leakage or other security vulnerabilities. Stumpp et al.[37] demon-
strated the potential of prompt injection to indirectly execute
arbitrary code within a Python interpreter in LLM applications,
thereby gaining control over the host server (e.g., accessing envi-
ronment variables, arbitrary file contents, executing DoS attacks,
etc.). Chen et al.[14] and Shayegani et al. [93] further explored
the threats of prompt injection using multi-modal inputs.

• Jailbreaking. Jailbreaking attempts to subvert safety filters built
into the LLMs themselves [115]. Recent research [21, 114, 130]
has used a variety of methods to make the LLMs LLMs respon-
sive to restricted or insecure content (e.g., content that contains
pornography, biased content, or assists the user in committing
criminal acts). Wei et al. [114] investigates the reasons for the

success of such attacks and how they occur, emphasizing the
need for safety-capability parity. To assess the potential harm
caused by jailbreaking, Shen et al. [94] devised the JailbreakHub
framework including 1,405 jailbreak prompts.

4.3.5 Risks on LLM Applications. The LLM application performs
various tasks using the LLM involving natural language processing,
task-based dialogue, database search, etc. It can be aweb application,
an agent or a chatbot. The potential risksmay be exposed inmultiple
ways.

Exploit LLM Application Vulnerabilities. The LLM Plugin
Store (e.g.,GPT store [76]) is a platformwhere users can discover, in-
stall, and manage plugins designed for enhancing the functionality
of large language models. However, attackers can publish malicious
plugins, guiding the model to output incorrect content through
prompt injection [116]. Moreover, some third-Party plugins could
lead to account takeovers and data leakage [51, 52, 73]. Exploit
lLM application vulnerabilities can potentially cause the hacker use
(SR1), data leakage (PR1) and performance degradation (DR1).

Excessive Access. Users may overload the LLM application
with excessive requests, potentially causing it to malfunction or
become unresponsive. A Denial of Service (DoS) attack is a type of
cyberattack that seeks to deplete computational resources, result-
ing in latency or rendering resources unavailable. Given that large
language models (LLMs) demand substantial computational power,
attackers can deliberately craft prompts to diminish the availabil-
ity of these models [22]. Shumailov et al. [96] demonstrated the
feasibility of performing DoS attacks within the domain of LLMs.
These attacks significantly increased the energy consumption and
latency of themodel (boosted to 10 to 200 times), raising researchers’
concerns about performance security in critical decision-making
scenarios. Stumpp et al. [100] et al. used prompt injection to con-
trol the execution of dead-end code by the code executor of an
LLM application, resulting in an unresponsive program host server.
Excessive access can potentially cause hacker use (SR1), system
compromise (SR2), emergence of abnormal content (SR3), data leak-
age (PR1), personally identifiable information (PII) leakage (PR2),
model stealing (PR3), code leakage (PR4), and prompt leakage (PR5),
and performance degradation (DR1).

Feedback Pollution. Existing LLM systems are often tweaked
based on user feedback to improve their performance [38]. However,
attackers may disrupt the performance of an LLM system by inject-
ing a large amount of irrelevant data, leading to a surge in false
feedback. Consequently, analysts at the victim organization may
find themselves spending excessive time reviewing and rectifying
erroneous inferences [68]. More seriously, LLM model developers
may use this erroneous feedback during the instruction tuning
phase to conduct reinforcement learning based on human feedback.
This situation can not only lead to a decline in model performance
but also cause the model to exhibit unpredictable behavior when
facing real-world data [5, 109]. Sun et al. [101] demonstrate two
proof-of-concept examples, stealthily manipulating a neural code
generation system to generate code with vulnerabilities, attack pay-
load, and malicious and spam messages. Feedback pollution can
potentially cause the hacker use (SR1), system compromise (SR2),
emergence of abnormal content (SR3), privacy risk (PR).
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Perform Middleman Attack. A Man-in-the-Middle (MitM)
attack involves an attacker intercepting communication between
two parties without their knowledge. In the context of using the
LLM Application or any chatbot platform, a MitM attack could
occur if an attacker gains access to the communication channel,
allowing them to alter or steal sensitive information being shared
between a user and the AI system. Kang et al. [49] demonstrated that
attackers may intercept data transmitted during a user’s interaction
with LLM-based applications, leading to unauthorized access to
sensitive information. Si et al. [97] proposed that attackers can set
up a fake API that mimics a legitimate one while offering a lower
price to lure users. It not only allows the attacker to modify or
steal sensitive data but also to exploit economic gains from the
middle. The middleman attack can potentially cause data leakage
(PR1), personally identifiable information (PII) leakage (PR2), model
stealing (PR3), code leakage (PR4), and prompt leakage (PR5).

4.3.6 Risks on Platforms. Many platforms play important roles in
the LLM supply chain, supporting various stages such as source
code management, data hosting, model training, monitoring, and
deployment. However, these platforms can introduce inherent risks.

Camouflage Contributors. Attackers can create fake accounts
that imitate existing platform accounts (e.g., official accounts) to
publishmalicious data, code, models, andmore. Usersmay bemisled
by these repositories, inadvertently using malicious tools to develop
or deploy large models. It can cause the risk of malicious use (SR1).

Malicious Contributors. Attackers can obtain and exploit cre-
dentials of existing accounts or API tokens through various meth-
ods [71, 72]. An LLM red team organization [105] has demonstrated
in practice that once in possession of these credentials, attackers
can gain unauthorized access to a range of resources and services
associated with LLMs, potentially compromising the integrity, confi-
dentiality, and availability of the targeted systems and data. Attack-
ers can also use social engineering tactics to become maintainers
of legitimate projects. Once they have obtained maintainer status,
they can introduce malicious code or dependencies, which may
go unnoticed by other contributors or users due to the perceived
legitimacy of the new maintainer. For instance, in the XZ attack,
the attacker gained maintainer access to the XZ project, embedding
a backdoor in a critical dependency [4]. It can cause the risk of
malicious use (SR1).

Exploit Platform Vulnerabilities. Exploiting platform vul-
nerabilities refers to attackers identifying and taking advantage of
weaknesses in the underlying infrastructure of an LLM or related
application. These vulnerabilities can exist in the platform’s soft-
ware, hardware, or configuration, allowing attackers to perform
unauthorized actions such as gaining access to sensitive data, alter-
ing model behavior, or disrupting services. It can cause the risk of
hacker use (SR1), data leakage (PR1) and model stealing (PR3).
• CI/CD Flaws. Attackers can leverage flaws in AI cloud services to
carry out attacks. Researchers fromWiz identified vulnerabilities
in SAP’s AI Core service, which could have allowed attackers to
access sensitive data of other tenants within SAP’s cloud infras-
tructure [90]. By exploiting these flaws, attackers can retrieve
AWS tokens, access AI training data, and potentially cause data
theft, service disruption, and even supply chain attacks within
LLM applications.

• Privacy Leakage. Attackers can exploit secrets found in public ar-
tifacts generated by automated CI/CD pipelines. Recent research
revealed that artifacts produced by GitHub Actions workflows
may contain sensitive tokens, such as GITHUB_TOKEN and AC-
TIONS_RUNTIME_TOKEN, which attackers could use to inject
malicious code [31]. When users download and utilize these com-
promised artifacts, it can result in a supply chain attack.

4.3.7 General Risks to LLM Supply Chain Component. Apart from
risks that are specific to the six composing elements, we elaborate
on general risks to LLM supply chain components.

Introduce Risky Components. A benign contributor may not
realize that the components they introduce have hidden vulnerabil-
ities or security flaws. These risky components can be exploited by
malicious actors once deployed. For example, an LLM application
might rely on a library that appears secure but contains a hidden
vulnerability. When the benign contributor integrates this library,
they inadvertently expose the LLM and its users to potential ex-
ploitation. Attackers can leverage these risky components for data
theft, model manipulation, or unauthorized access. It can cause
the risk of hacker use (SR1), data leakage (PR1) and model stealing
(PR3).

DiscontinueMaintenance.When a contributor stopsmaintain-
ing a component, updates for security patches, bug fixes, and com-
patibility improvements are halted. It can lead to vulnerabilities if
the abandoned component contains outdated dependencies that are
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prone to exploitation. Moreover, the discontinuation can disrupt fur-
ther development by creating compatibility issues, reducing model
performance, or complicating integration with newer systems. Fur-
thermore, it poses significant risks because malicious actors could
take advantage of this by forking the abandoned project and insert-
ing malicious code. It can cause the risk of unmaintained (DR2).

Release Vulnerable Code. The benign contributors may sub-
mit code that contains security flaws or exploits without malicious
intent. Such vulnerabilities could range from weak encryption prac-
tices, insecure data handling, or exploitable logic errors. While the
contributor’s intent is not harmful, the inadvertent introduction of
security issues can still have serious consequences, potentially lead-
ing to supply chain attacks. It can cause hacker use (SR1), system
compromise (SR2), and the emergence of abnormal content (SR3).

Raise License Disputes. While open-source licenses generally
grant permission to use, modify, and distribute the code, the owners
retain the copyright. It introduces potential risks for users who
download and use the code, model or data if contributors claim
copyrights on their code. Theymay enforce restrictions or take legal
action if users violate the terms of the license. In 2020, CoKinetic
Systems sued Panasonic for allegedly violating the GPLv2 license,
with the lawsuit seeking financial compensation [69]. It can cause
the risk of license disputes (LR1).

5 Mitigation of Risks in Large Language Model
Supply Chain

We elaborate on the mitigation of risks in the LLM supply chain
with regard to the seven aspects.

5.1 Mitigation to Risks from Third-party
Libraries

Malware Detection. Malware detection identifies viruses, worms,
trojans, and backdoors from third-party libraries in both binaries
and source code. Key techniques include signature comparison,

static analysis, and dynamic analysis. Signature-based detection
tools, like VirusTotal [108], are effective for identifying binary mal-
ware. To detect malware within package registries, static and dy-
namic analyses are widely applied. Recent research has advanced
these approaches by modeling the behavior of malicious pack-
ages using static characteristics alone [43, 124], as well as inte-
grating both static and dynamic analyses to enhance detection
accuracy [23, 40]. This measure can mitigate the risk SR2.

Software Bill-of-Materials Analysis. A Software Bill of Mate-
rials (SBOM) is a list of inventory components included in imported
third-party libraries. SBOM analysis provides visibility into all third-
party libraries and their versions, helping users avoid unvetted or
potentially risky libraries. Several commercial tools offer SBOM
analysis, including Sonatype Management [98], BlackDuck [6], and
Microsoft’s SBOM tool [66]. By utilizing SBOM analysis, users can
enhance security and improve overall software quality throughout
the development lifecycle. This measure can mitigate the risk SR2
and SR3.

5.2 Mitigation to Risks from Dataset
Data-Deduplication. In the face of privacy risks, we can leverage
data deduplication on the dataset. Jagielski et al. discovered that
model privacy attacks are more effective on the training dataset
that appears multiple times [47]. Removing duplicate text from
the training data [1] helps protect against model memorization of
sensitive information, making privacy attacks less effective. This
measure can mitigate the risk PR2.

Data Encryption. Data encryption protects data confidentiality
by converting it into an unreadable format, consisting of three types:
symmetric encryption [41], asymmetric encryption [42, 61], and
hybrid encryption [2]. With effective key management mechanisms,
the data cannot be deciphered, significantly reducing the risk of data
privacy breaches. This measure can mitigate the risk PR1 an PR2.

Data Sanitization. Data sanitization cleans input data to defend
against data poisoning and backdoor attacks by applying techniques
like data denoising, filtering, and smoothing, which effectively re-
move adversarial noise while retaining legitimate information [118].
Additionally, these methods help prevent data leakage by ensuring
that shared or processed data cannot be traced back to individuals.
This measure can mitigate the risk SR3 and PR1.

Data Watermark. Data watermark protects data privacy by
embedding specific watermark identifiers [102, 104] into the train-
ing dataset. During the training process, the model is trained using
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watermarked data, ensuring that it generates output text contain-
ing the corresponding watermark when given specific inputs, thus
achieving the goal of identifying and tracing the data source. This
measure can mitigate the risk PR1.

Differential Privacy. Differential privacy [3] protects the pri-
vate information of individual records in a dataset [24, 25]. Specifi-
cally, a differential privacy mechanism adds noise to each training
data point. It ensures that even if a particular data point is replaced
or removed, the model’s output will not be significantly affected,
which effectively prevents attackers from inferring private infor-
mation in the training data by analyzing the model’s outputs. This
measure can mitigate the risk PR2.

5.3 Mitigation to Model Risks
Model Signature. Model signature helps to track and manage the
origin of models. Jiang et al. [48] described useful attributes for rep-
resenting the model signature, such as provenance, reproducibility,
and portability. Recording and verifying key attributes, provides
a reliable reference point, allowing researchers or engineers to
trace and verify the model’s training process, thereby determining
whether the model has been maliciously modified or compromised.
This measure can mitigate the risk PR3.

Model Watermark. Model watermark embeds traceable infor-
mation into the text generated by LLMs to verify the model’s source
and authenticity without degrading output quality. Techniques such
as logits modification [50], entropy-based embedding [57], multi-
bit payload [111], and token sampling [53] enable efficient water-
marking by embedding verifiable identifiers that protect against
model-stealing, safeguarding intellectual property and ensuring
model integrity. This measure can mitigate the risk PR3.

Model Obfuscation.Model obfuscation protects the security
and privacy of the LLMs. It modifies the model’s structure or pa-
rameters to prevent attackers from being reverse-engineered or
maliciously exploited. Zhou et al. [129] proposed an active defense
solution for model theft via automated weight obfuscation. This
measure can mitigate the risk PR3.

Model Alignment. Model alignment ensures that a model’s
outputs and behaviors align with human values and expectations.
Reinforcement Learning from Human Feedback [77] incorporates
human feedback into the model’s training process, guiding the
model to learnwhich behaviors are appropriate or not. Thismeasure
can mitigate the risk SR3.

Adversarial Training. Adversarial training is a machine learn-
ing technique designed to enhance model robustness by exposing
themodel to adversarial examples [117] during training. By learning
to recognize and handle these malicious inputs, the model becomes
more resilient to attacks and unpredictable behavior. This measure
can mitigate the risk SR3.

Federated Learning. Federated Learning is a decentralized ap-
proach where multiple clients collaboratively train a shared model
without transferring their individual data to a central server. It
prevents the aggregation of malicious updates by identifying and
excluding anomalies in the distribution using unsupervised or su-
pervisedmachine learning techniques [59, 125]. By leveraging three-
stage defenses (pre-aggregation defense (Pre-AD), in-aggregation

defense (In-AD), and post-aggregation defense (Post-AD)), feder-
ated learning ensures that the aggregated model remains secure
and resistant to backdoor attacks or malicious data manipulation,
while still benefiting from decentralized data training. This measure
can mitigate the risk SR3.

5.4 Mitigation to Prompt Risks
Prompt Sanitization. Prompt sanitization filters, formats, or reg-
ularized prompts are provided to LLMs to ensure that the model
does not misinterpret their original intent, thereby preventing ab-
normal content or malicious behavior. [87, 103] have been shown
to effectively prevent jailbreak in LLMs. Suo et al. [103] applied to
sign to sensitive elements (e.g.,’delete file’) in the user’s prompt.
Robey et al. [87] randomly perturb characters in a given input
prompt (e.g., inserting random characters). Chen et al .[14] sep-
arates prompts and user data into two independent channels to
prevent prompt injection. This measure can mitigate the risk SR3.

Robust Tuning. Robust tuning enhances the defense of LLMs
against prompt risks by incorporating specific techniques dur-
ing tuning. For example, Yue et al. [123] fine-tuning a genera-
tive language model with differential privacy to generate privacy-
preserving synthetic text. Ozdayi et al. [78] leverage prompt-tuning
to control the extraction rates of memorized content, avoiding
attack modifying LLM weights. This measure can mitigate the
risk SR3.

Model Structure Optimization. Model structure optimization
aims to enhance the robustness of LLMs’ inference by modifying
their structure to defend against malicious prompts. Chen et al [15].
Employ homomorphic encryption to enable privacy-preserving
inference for Transformer-based models. Li et al. [58] achieve effi-
cient and private Transformer inference using Secure Multi-Party
Computation (MPC). This measure can mitigate the risk PR1.

5.5 Mitigation on LLM Applications Risks
Secure Auditing and Permission Management. Secure audit-
ing and permission management are crucial for mitigating risks
associated with LLM plugins. This approach includes enforcing
strict vetting processes to ensure that only trusted plugins are
integrated into the system, implementing anomaly detection sys-
tems to identify unusual behaviors indicative of malicious activity,
and conducting regular security audits to assess plugin security
and compliance. Additionally, employing role-based access control
(RBAC) limits permissions, ensuring that users and plugins have
only the necessary access to perform their functions, thereby re-
ducing the attack surface. By maintaining a comprehensive logging
system, organizations can track interactions and quickly respond to
potential security incidents, fostering a proactive security posture.
This measure can mitigate the risks SR1, SR3 and LR2.

Authorized and Restricted Access. Authorized and restricted
access is a key defense mechanism against several risks in LLM ap-
plications. For feedback pollution, restricting access to authorized
users ensures that only credible feedback is collected for model
training. For Middleman (MitM) attacks, by enforcing strong ac-
cess controls, such as mutual authentication and encryption, only
authorized clients can communicate with the LLM. For excessive ac-
cess, limiting access to verified users via rate-limiting mechanisms
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mitigates the risk of excessive API requests that can overload the
system, leading to Denial of Service (DoS) attacks. By ensuring only
authorized users can access the LLM, and controlling the frequency
and scope of interactions, systems can prevent abuse and maintain
availability. This measure can mitigate the risks DR1, DR2 and DR3.

5.6 Mitigation to Platform Risks
Anomaly Monitoring. Platforms can apply authorized and re-
stricted access for untrusted accounts. e.g., multi-factor authoriza-
tion [84]. Apart from that, they can adopt anomaly monitoring by
observing developing activities to identify any suspicious behavior,
such as unauthorized access attempts, changes to account settings,
or unexpected pull requests. For example, Danielle et al. [36] lever-
aged commit messages to detect anomalies and malicious commits.
This measure can mitigate the risk SR2.

Mitigating Platform Vulnerabilities. Platforms should also
ensure that their CI/CD systems are following best security prac-
tices, such as least privilege, secure credential storage, and network
segmentation, keeping all CI/CD tools and dependencies up to date
with the latest security patches to protect against known vulnerabil-
ities [90], and regular security assessments and vulnerability scans
of the CI/CD environments to promptly identify security flaws.
This measure can mitigate the risk SR2.

Session Isolation and Privacy Protection. Using sandboxing
in platforms isolates user sessions within separate environments,
preventing cross-session attacks. By restricting access to shared
resources and data, sandboxing ensures that malicious activities in
one session cannot affect others. This containment helps protect
sensitive information and enhances overall security by limiting the
impact of potential breaches. Besides, platforms can utilize secrets
management tools, log scanning, and sanitization to ensure that
sensitive information like tokens and API keys are not exposed in
repositories or logs [31]. This measure can mitigate the risks SR2,
PR1, PR2, PR3 and PR4.

5.7 Mitigation to General LLM Supply Chain
Component Risks

Enhancing Security and Legal Risk Awareness.Developers and
organizations should be vigilant when incorporating components
into their software systems. On the one hand, they should actively
monitor for known vulnerabilities in third-party libraries and frame-
works, thus reducing their exposure to potential threats. On the
other hand, they should familiarize themselves with licensing agree-
ments, intellectual property rights, and the potential liabilities tied
to both open-source and proprietary components. This measure
can mitigate the risks SR2 and LR1.

Training for Secure Coding. Adhering to secure coding prac-
tices is fundamental to minimizing software vulnerabilities. This
includes following best practices for input validation, implementing
robust error handling, and adhering to established secure coding
guidelines. By prioritizing these practices, developers can substan-
tially lower the likelihood of introducing security flaws into their
applications, thereby safeguarding user data and assets. This mea-
sure can mitigate the risk SR2.

Preparing Alternative Components. To mitigate the risks
associated with reliance on components that may become unsup-
ported or discontinued, it is important to seek alternative solutions.
Moreover, advanced replacement techniques are also needed to
help migrate the original component into a new one with the least
effort and cost. By diversifying their dependencies and preparing
for potential discontinuations, the stability and security of the LLM-
driven application can be enhanced. This measure can mitigate the
risks SR2, DR2 and DR3.

6 Discussion
We discuss future challenges and opportunities towards mitigating
the risks in the LLM supply chain.

6.1 Future Challenges
Comprehensive and Precise Decomposition of the LLM Sup-
ply Chain. Decomposing the LLM supply chain is essential in
understanding and mitigating risks in the LLM-related ecosystem,
ensuring compliance, and enhancing transparency across the LLM
lifecycle. First, mapping an entire LLM supply chain is a complex
task. As the scope and applications of LLMs expand, defining clear
boundaries for the LLM supply chain becomes nearly impossible.
Nevertheless, identifying a clear scope of relevant components is
crucial to enable a comprehensive analysis of the LLM supply chain,
including its core artifacts, stakeholders, and supply relationships.
This clarity allows each stakeholder to understand their role and
responsibilities within the supply chain effectively. Second, the
unique dependencies of the LLM supply chain adds further complex-
ity. Unlike traditional software supply chains, the LLM supply chain
includes special dependencies—such as models embedding external
knowledge (e.g., data or code). The models do not directly use ex-
ternal resources. Instead, they encode knowledge into tensors and
weights, obscuring the origins and composition of these elements.
Third, LLM artifacts (e.g., models, datasets, and prompts) differ fun-
damentally from software artifact, making it difficult to directly apply
standard version management. This limitation complicates efforts to
decompose the LLM supply chain effectively and hinders accurate
tracking and management.

Compliance with Government Laws and Guidelines. The
growth of new LLM applications is expected to accelerate with
the increasing availability of commercial and open-source LLMs,
leading to their adoption across a wide range of industries from
different countries. Since industries across countries may be subject
to varying regulations and requirements, ensuring compliance with
government laws and guidelines is essential. First, as LLMs often
rely on data sourced from various online platforms, verifying the
legality of training datasets to see if it is intellectual property (IP)
free is essential. Given that the conclusion of dataset composition
may be indirect, it is challenging to establish a common sense
for copyright infringement or IP violations solely based on the
model’s generated output or trained weights. Furthermore, the
providers may deliberately wipe traces of the IP for their benefit.
Therefore, it is also crucial to fight against those actions. Second,
the vast data required to train LLMs includes sensitive information
that may pose privacy risks. Ensuring compliance with data privacy
laws like GDPR, alongside securing data through encryption and
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anonymization is also a critical issue. Third, LLMs are prone to
inheriting biases present in their training data, which can persist
in the downstream application, affecting their performance and
trustworthiness. Developing robust strategies for identifying and
mitigating biases is crucial for ethical AI.

Vigilant Prevention of Adversarial Attacks. On one hand,
with reliance on third-party data sources, libraries, proprietary
frameworks, and cloud providers, there is a risk of supply chain
vulnerabilities and limited control over model updates. This creates
security concerns as well as challenges in maintaining compatibility
and transparency. On the other hand, LLMs are increasingly targeted
by adversarial attacks, such as data poisoning or model inversion,
which can compromise data integrity or privacy. Developing robust
defenses will be necessary to ensure secure usage.

6.2 Opportunities
Collaborative Open-Source Ecosystem. The prosperity of LLMs
is inherently linked to the open-source community. The techniques
for effectively leveraging the open-source ecosystem around LLMs
are still underdeveloped. Open-source contributions should incor-
porate collaborative risk assessments and secure coding practices to
prevent vulnerabilities. Additionally, establishing ethical guidelines
for contributions, such as promoting diversity in training data and
addressing bias, can ensure that open-source models are developed
responsibly. Furthermore, there is a need for shared benchmarks
and evaluation standards that enable developers to compare models
transparently, fostering objective performance improvements and
driving innovation.

Enhanced Transparency and Traceability. Improved trans-
parency in sourcing especially in data and models during the whole
LLM application developing process can build user trust, ensure
accountability in LLM development, and foster ethical AI practices.
There are three potential approaches. First, creating detailed audit
trails for data usage and transformations in training pipelines can
enhance accountability and support error tracking. Second, allow-
ing controlled access to different data and model components sup-
ports transparency while protecting sensitive information. Third,
tracking changes across model versions, from initial models to re-
fined iterations, enables stakeholders to understand the model’s
evolution and track back any issues related to specific changes.

Regulatory and Standards Development. Establishing stan-
dardized practices and regulatory frameworks for the LLM supply
chain can help align practices across different providers, ensur-
ing security, compliance, and interoperability. On the one hand,
we need to define clear guidelines on data handling, including data
anonymization and user consent, which can help prevent privacy
infringements. On the other hand, regulatory frameworks could
include guidelines for reducing bias, ensuring fairness, etc.

Improved Defense Mechanisms. Developing stronger de-
fenses against adversarial threats can enhance the resilience of
LLMs against cyber threats and tampering. Three potential ap-
proaches can be considered. First, implementing systems to detect
unusual activity or output patterns can help identify and mitigate
adversarial attacks effectively. Second, utilizing secure delivery
channels from an identified contributor can prevent untrusted mod-
ifications to LLMs. Third, establishing automated models or library

updates can address vulnerabilities in LLM applications promptly,
reducing the risk of exploitation.

7 Conclusions
The rapid growth of large language models has transformed numer-
ous industries, creating an intricate supply chain that may incur
potential risks. This paper presents a comprehensive overview of
the LLM supply chain. We identify and categorize the risks inher-
ent in this supply chain, framing them through stakeholders, risky
actions, risk types, and specific supply chain components. Addi-
tionally, we provide a taxonomy of mitigation strategies, offering
actionable guidance for stakeholders seeking to navigate and se-
cure the LLM supply chain. We also highlight emerging challenges
and opportunities in securing the LLM supply chain, aiming to
inspire further research into robust defenses and proactive security
measures.
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