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Abstract— With the rapid development of autonomous vehi-
cles, there is an increasing demand for scenario-based testing to
simulate diverse driving scenarios. However, as the base of any
driving scenarios, road scenarios (e.g., road topology and geom-
etry) have received little attention by the literature. Despite sev-
eral advances, they either generate basic road components with-
out a complete road network, or generate a complete road net-
work but with simple road components. The resulting road sce-
narios lack diversity in both topology and geometry. To address
this problem, we propose ROADGEN to systematically generate
diverse road scenarios. The key idea is to connect eight types of
parameterized road components to form road scenarios with
high diversity in topology and geometry. Our evaluation has
demonstrated the effectiveness and usefulness of ROADGEN in
generating diverse road scenarios for simulation.

I. INTRODUCTION

Autonomous vehicles have been widely developed in the
last decades due to their impact on automotive transportation
and their benefit to society (e.g., reducing vehicle collisions,
and providing personal mobility to disabled people) [15]. It is
important to ensure the safety and reliability of autonomous
vehicles for world-wide adoption. Therefore, on-road testing
is widely used by leading companies. However, autonomous
vehicles would have to be driven more than 11 billion miles
to demonstrate with 95% confidence that they are 20% safer
than human drivers [10]. It is expensive for on-road testing to
achieve this goal, and it is also impossible for on-road testing
to test corner cases or dangerous situations.

To this end, scenario-based testing [17], [30] is also widely
used by leading companies to simulate diverse driving sce-
narios. As of February 2021, Waymo’s autonomous vehicles
have been tested with over 15 billion miles of simulated driv-
ing [27]. Various approaches have been developed to generate
driving scenarios [28], [6], [21]. However, they mainly focus
on the diversity in vehicle/pedestrian behaviors and weather
conditions, but overlook the diversity in roads [30], [21]. Sev-
eral recent advances have been proposed on generating road
scenarios [31], [18], [23], [16]. However, they either generate
basic road components (e.g., highway interchanges) without
a complete road network [31], [18], or build a complete road
network but with simple road components (i.e., straight roads
and junctions) [23], [16]. Therefore, their generated road sce-
narios lack diversity in both topology and geometry.

To address the problem, we propose ROADGEN to system-
atically generate diverse road scenarios. First, we define and
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implement eight types of basic road components. Each road
component is parameterized to reflect its geometry diversity.
Second, we connect road components to form road scenarios.
This process is guided by favoring the selection of least used
road components so as to ensure the geometry diversity of
road scenarios. Third, we remove duplicated road scenarios
that have the same topology to ensure the topology diversity
of road scenarios. Finally, we convert the generated road sce-
narios into high-precision (HD) map files and 3D scene files,
which can be used for joint simulation by simulators.

To evaluate the effectiveness of ROADGEN, we use ROAD-
GEN to generate road scenarios that have 4, 5, 6, 7 and 8 road
components. Our results have demonstrated that ROADGEN
can generate more diverse road scenarios than a baseline ap-
proach that randomly selects and connects road components.
Furthermore, to evaluate the usefulness of ROADGEN, we
sample road scenarios and convert them into HD map files
and 3D scene files for joint simulation on SORA-SVL [9]
with Apollo 8.0 [2]. Our results have indicated that over 92%
of the road scenarios can be useful for joint simulation.

In summary, this work makes the following contributions.

o We define and implement eight types of parameterized
basic road components.

o We propose a guided approach to connect road compo-
nents to generate diverse road scenarios.

« We conduct experiments to demonstrate the effective-
ness and usefulness of ROADGEN, and build a dataset
of road scenarios for simulation testing.

II. RELATED WORK AND PROBLEM STATEMENT
A. Related Work

Scenarios [25], [13] are important for developing and test-
ing autonomous vehicles. To represent scenarios, Bagschik et
al. [1] develop a 5-layer model, including road-level (layer 1),
traffic infrastructure (layer 2), manipulation of layer 1 and 2
(layer 3), objects (layer 4), and environment (layer 5), while
Scholtes et al. [20] extend it by adding digital information as
layer 6. To generate scenarios, various approaches have been
developed [22], [5], [28], [6], [21], e.g., extracting scenarios
from driving data [11], [3] or crash data [8], [4], [7], [29], and
searching scenarios by evolutionary algorithms [26], [12],
[24] or combinatorial interaction testing [19].

However, recent surveys [30], [21] show that most scenario
generation approaches have focused on scenarios at layer 4
and 5 by manipulating vehicles, pedestrians and weather con-
ditions, while little attention has been paid on road topology
and geometry, and traffic signs (i.e., layer 1, 2 and 3), which
serve as the base of any scenario. Zhou et al. [31] propose a
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Fig. 1. Approach Overview of ROADGEN

model-driven method to generate highway interchanges that
are one basic component in road networks. Rietsch et al. [18]
also attempt to generate basic components, i.e., roundabout,
intersections, highway entry, drive and exit. Differently, our
work aims to compose road networks based on basic compo-
nents. Tang et al. [23] first extract junction features from HD
maps, and then build road networks by connecting the junc-
tions in a grid layout. Paranjape et al. [16] generate road net-
works with different road sizes and intersections. However,
these approaches only consider straight roads and junctions,
and thus the generated road networks lack diversity.

B. Problem Statement

This work is focused on the road-level (layer 1) scenario of
the 5-layer model [1], which describes the topology and ge-
ometry of road scenarios. Specifically, the topology of a road
scenario can be characterized by how different road compo-
nents (e.g., straight road, curve road, fork road, and intersec-
tion) are connected together. The geometry of a road scenario
can be characterized by factors like the number of lanes and
the type of lane markings. The diversity of road scenarios in
both topology and geometry is important for developing and
testing autonomous vehicles. Therefore, our problem can be
stated as how to systematically generate road scenarios such
that they have diverse topology and geometry.

III. METHODOLOGY

We propose ROADGEN to systematically generate diverse
road scenarios. An overview of ROADGEN is presented in
Fig. 1. Each step of ROADGEN is explained below.

A. Road Component Implementation

Based on our understanding of real-life roads, we decom-
pose roads into distinct segments, and define eight types of
typical road components, as illustrated in Fig. 2. To reflect
geometry diversity, each road component can be parameter-
ized by road length (L), lane width (W), the number of lanes
(LaneNum,), the type of lane markings (LaneM arks), the
coordinate of the starting point (Start), and the direction to
position the component from the starting point (Direction).

o Straight. As shown in Fig. 2(a), a straight road follows
a linear trajectory without any curves, bends, or turns.
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Fig. 2. Eight Types of Typical Road Components

Curve. As shown in Fig. 2(b), a curve road changes its
direction as it progresses. We apply Bézier curves [14]
to construct the lane curve. A Bézier curve B(t) can be
constructed by four control points Py — P, i.e., B(t) =
(1-1)3Py+3(1—1)%tP1+3(1—-t)t? Py +t3P5, t € [0,1].
Lane Switch. As shown in Fig. 2(c), a lane switch road
undergoes a transition about the number of lanes (e.g.,
changing from 2 lanes to 3 lanes).

Fork. As shown in Fig. 2(d), a fork road is a road seg-
ment where a single road splits into two separate roads,
or two separate roads merge into a single road.
T-Intersection. As shown in Fig. 2(e), a T-intersection
is a junction where one road meets another road at a
right angle. It creates a three-way intersection where
vehicles on the main road can continue straight, while
vehicles on the intersecting road can turn left or right.
Intersection. As shown in Fig. 2(f), intersection is a
junction where two roads meet or cross each other.
U-Shaped Road. As shown in Fig. 2(g), a U-shaped
road is a road segment where a 180-degree turn is re-



1 % Initialize lanes in a component using LaneNum.

2> Lanes (LaneNums) = roadrunner.hdmap.Lane();

3 % Draw coordinates of lanes and boundaries.

4 Lanes.Geometry = deal ([coordinates of lanes]);

5 LaneBoundaries.Geometry = deal ([coordinates of boundaries]);
6 % Set lane markings according to LaneMarks.

7 LaneBoundaries.ParametricAttributes = deal (LaneMarks)

8§ % Combine lanes with predecessors and successors

9 % where i, j,k represent the ID of lanes.

10 Lane (i) .Predecessors = roadrunner.hdmap.Reference (Lane(j));

1l Lane (i) .Successors = roadrunner.hdmap.Reference (Lane (k));

Listing 1. Part of a Sample Template for Road Components

quired to go in the opposite direction. It can be consid-
ered as being composed of two straight road segments
and a circular arc segment.

+ Roundabout. As shown in Fig. 2(h), a roundabout is a
junction where traffic from four roads flows around a
central island in a counterclockwise direction (in coun-
tries with right-hand traffic).

After defining the eight types of road components, we use
Python to implement programming templates for these road
components. These templates can be instantiated to generate
MATLAB scripts which describe the road components. As il-
lustrated in Listing 1, all templates are primarily composed of
the following steps, i.e., initializing the lanes contained in a
component according to Lane Num, drawing coordinates of
lanes and boundaries based on L, W, Start and Direction,
setting lane markings according to LaneMarks, and com-
bining lanes to form the component by assigning references
to lane predecessor and successor.

We provide different templates for each road component
based on the number of lanes (LaneNum) and the type of
lane markings (LaneMarks). These templates are distinct
from each other, encompassing 1 to 6 lanes and any of the
seven types of lane markings based on real-world road rules
(i.e., white dashed lane lines, white solid lane lines, white
double solid lane lines, yellow dashed lane lines, yellow solid
lane lines, yellow double solid lane lines, and yellow dashed-
solid lane lines). Specifically, we provide a total of 242
unique templates for these eight types of road components.

When instantiating these templates, we only need to spec-
ify the road length (L), lane width (W), coordinate of starting
point (Start), and direction to position the road component
(Direction). For curve road, we also need to specify Fy—Ps.
For U-shaped road, we also need to specify D to denote the
distance between the two straight road segments, and X to

control the arc segment. We can calculate the coordinates of

the road and boundaries to fill in the template based on these
input parameters, thereby instantiating the component.

B. Guided Road Component Connection

We design a guided algorithm to connect instantiated road
components to generate diverse road scenarios, as presented
in Algorithm 1. It has four inputs: (1) CompList, the 242
programming templates for the road components as imple-

Algorithm 1: Guided Road Scenario Generation

Input: CompList, TotalCount, Constraints, Candidates
Output: RoadScenSet

1 CompCount = 0;

2 while budget is not reached do

Count = 0; CoveredArea = 0;

EndpointQueue = 0; RoadScen < 0;

C = selectFirstComp(CompList, CompCount);

¢ = instFirstComp(Constraints, C);

RoadScen <= c.generateRoad|();

Count ++;

CoveredArea += c.getCoveredArea();

10 CompCount|C] += 1;

11 EndpointQueue.add(c.get Endpoints());

12 while Count < TotalCount && EndpointQueue # 0 do
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13 p = EndpointQueue.pop();

14 if random() || isLast(EndpointQueue, p) then

15 Cands = Candidates[p.Typel;

16 while length(Cands) > 0 do

17 D = selectLeastUse(Cands, CompCount);
18 d = inst(p, Constraints, D, CoveredArea);
19 if d# NULL then

20 RoadScen <= d.generateRoad();

21 RoadScen <= connect(p, d);

22 Count ++;

23 CoveredArea += d.getCoveredAreal();
24 CompCount[D] += 1;

25 EndpointQueue.add(d.get Endpoints());
26 break;

27 end

28 else

29 | Cands.remove(D);

30 end

31 end

32 end

33 end

34 RoadScenSet += RoadScen;

35 end

mented in Sec. III-A; (2) TotolCount, the number of in-
stantiated road components included in one road scenario;
(3) Constraints, the constraints about parameters of each
road component (e.g., the valid range of road length and lane
width), which need to be satisfied, when road components are
instantiated, to make the generated road scenarios as realistic
as possible; and (4) Candidates, the candidate road compo-
nents from the 242 programming templates that can be con-
nected to each type of endpoints. Each road component has
one or multiple endpoints that can be connected to the start-
ing point of other road components. For example, a round-
about has three endpoints. Hence, we summarize the types of
different endpoints, and compute their candidate road compo-
nents. For example, a 2-lane bidirectional solid-line endpoint
can be connected to a straight road with 2-lane bidirectional
solid-line. The output of Algorithm 1 is a set of road sce-
narios RoadScenSet in the form of MATLAB scripts.
This algorithm starts by initializing CompCount, which
records the number of times each of the road components in
CompList is used (Line 1). CompCount is used to guide
our algorithm to favor the selection of least used road compo-
nents during generation. Then, it generates one road scenario
RoadScen in each loop iteration until certain type of budget
is reached, e.g., a time budget of 24 hours is reached (Line 2-
35). Specifically, in each iteration, it selects a least used road



component C' from CompList as the first road component to
ensure geometry diversity (Line 5), and instantiates it to get
an instance ¢ of C' which satisfies Constraints (Line 6).
Then, it updates RoadScen, updates Count to record the
number of used road components, updates CoveredArea
to record the occupied area of the road scenario, updates
CompCount to record the usage of C, and adds the end-
points of ¢ to a queue EndpointQueue (Line 7-11).

As long as the current road scenario can be potentially fur-
ther connected to other road components, i.e., Count is less
than TotalCount and EndpointQueue is not empty (Line
12), it pops from EndpointQueue an endpoint p from which
RoadScen is further expanded (Line 13). If random() (re-
turning either true or false) returns true or p is the last one
in EndpointQueue (Line 14), it starts to expand RoadScen
at p (Line 15-31). Here, the randomness caused by random()
is leveraged to ensure topology diversity.

Then, it obtains from C'andidates the candidate road com-
ponents Cands that can be connected to p according to the
type of p (Line 15). Next, it selects the least used road com-
ponent D from Cands to ensure geometry diversity (Line
17), and instantiates it to get an instance d of D which sat-
isfies Constraints, matches with p, and does not overlap
with the current road scenario (Line 18). Specifically, it uses
the covered area of RoadScen and the covered area of d,
i.e., CoveredArea and d.getCoveredArea(), to determine
whether overlap occurs. If such a d is found (Line 19), it up-
dates RoadScen by adding d and connecting to d through p
(Line 20-21), updates C'ount, CoveredArea, CompCount,
and EndpointQueue (Line 22-25), and breaks to continue
expanding RoadScen at other endpoints (Line 26). If such a
d is not found, it removes D from C'ands (Line 29), and tries
to select the next least used road component from Cands.

C. Road Scenario Deduplication

The generated road scenarios can be similar in their topol-
ogy, i.e., the types of road components and the connections
between road components in two road scenarios can be simi-
lar, thus hurting the topology diversity. Hence, we propose a
similarity metric to measure the topology similarity, and use
it to remove duplicated road scenarios to ensure diversity.

We first define a road scenario as an undirected graph in
Definition 1 to model the topology of a road scenario.

Definition 1: A generated road scenario can be modeled
as an undirected graph G = (V| E'), where V is a set of ver-
tices denoting the road components within the road scenario,
and £ C V xV is a set of undirected edges denoting the con-
nections between road components.

Definition 2: Given two road scenarios G = (V, E) and
G' = (V',E'), and e = (u,v) € E, u,v € V,if 3u/,0' €
V', (v/,v") € E’ such that Type(u,v) = Type(u',v'), e
is regarded as duplicated in G’, denoted as DE(e,G') =
1; otherwise, DE(e, G') = 0. Here, T'ype(u,v) returns the
types of road component » and v.

Definition 3: Given two road scenarios G = (V, E) and
G = (V',E), and u € V, if V (u,v;) € E, v; € V such
that DE((u,v;),G’) = 1, u and its connections are regarded

as duplicated in G’, denoted as DV (u,G’) = 1; otherwise,
DV (u,G')=0

Based on Definition 2 and 3, we define a similarity metric
Sim (g, G,) to measure the topology similarity between two
road scenarios G and Go, as formulated in Equation 1,

S DV (i, Go) + SR DV (0, Gy) -y
AR

where G; = <‘/1,E1>, Gq = <V2,E2>, u; € Vi and v; € V.

Definition 4: Given two road scenarios G = (V, E) and
G' = (V',E'), G and G’ are regarded as duplicated in the
topology if Sim g gy = 1.

Based on Definition 4, we remove duplicated road scenar-
ios to ensure the topology diversity. Notice that we can also
use this similarity metric to keep the road scenarios whose
similarity to existing road scenarios is below a threshold.

Sim G, ,6,) =

D. Joint Simulation

Given the deduplicated road scenarios in the form of MAT-
LAB scripts, we first adopt MATLAB to compile the scripts
into RoadRunner HD map files (i.e., rrhd files). Here we use
the rrhd format because RoadRunner provides programmatic
interfaces to import rrhd files and export HD map file types
needed by various autonomous driving systems (e.g., Apollo
and Autoware) as well as 3D scene file types required by var-
ious simulators (e.g., SORA-SVL and CARLA). Then, we
use RoadRunner to convert rrhd files into target HD map files
and 3D scene files for joint simulation on a target simulator
with a target autonomous driving system.

IV. EVALUATION

We have implemented a prototype of ROADGEN in 354K
lines of Python and MATLAB code, and released the source
code of our prototype as well as all the experimental data at
our website https://roadgen.github.io/. To eval-
uate the effectiveness and usefulness of ROADGEN, we de-
sign the following two research questions (RQs).

o RQ1 Effectiveness Evaluation: How is the effective-

ness of ROADGEN in generating diverse road scenarios?

e RQ2 Usefulness Evaluation: Can the road scenarios

generated by ROADGEN be used for simulation?

A. Evaluation Setup

RQ Setup. To answer RQ1, we compare the effectiveness
of ROADGEN with a baseline approach, referred to as RAND,
which randomly selects and connects road components. We
set the number of road components included in each road sce-
nario to 4, 5, 6, 7 and 8, respectively, and continuously gener-
ate road scenarios for 24 hours using ROADGEN and RAND.
We record the number of generated road scenarios after dedu-
plication, the uniqueness rate (i.e., the rate between the num-
ber of generated road scenarios after and before deduplica-
tion), and the time for covering different road components.
We run the experiment 5 times, and report the average results.

To answer RQ2, we leverage Apollo 8.0 [2] and SOAR-
SVL [9] to demonstrate the usefulness of ROADGEN from
three perspectives, the usability of 3D scenes, the usability of
HD maps, and the usability for joint simulation.
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TABLE I
STATISTICS ABOUT ROAD SCENARIOS GENERATED WITHIN 24 HOURS

Road Scenario Size Number Uniqueness
ROADGEN RAND ROADGEN RAND
4 Road Components 400 390 0.185 0.150
5 Road Components 580 558 0.516 0.424
6 Road Components 549 530 0.629 0.534
7 Road Components 571 551 0.666 0.557
8 Road Components 458 432 0.602 0.527

Experimental Environment Setting. We conduct all the
experiments on a Ubuntu 20.04.4 LTS server with 4 NVIDIA
GeForce RTX 3090 GPUs, Inter Core i9-10980XE CPU with
3.00GHz processor, and 128 GB memory.

B. Effectiveness Evaluation (RQI1)

Overall Results. Table I presents the statistics about the
road scenarios generated by ROADGEN and RAND within 24
hours. The first column gives the road scenario size in terms
of number of road components, the second and third columns
show the number of generated road scenarios after deduplica-
tion, and the fourth and fifth columns list the uniqueness rate.

Specifically, across the five groups of experiments with re-
spect to different road scenario sizes, ROADGEN generate a
minimum number of 400 deduplicated road scenarios when
road scenario size is set to 4, and a maximum number of 580
deduplicated road scenarios when road scenario size is set to
5. In addition, on average, ROADGEN generates 3.9% more
deduplicated road scenarios than RAND across all the five
groups of experiments, which is statistically significant.

Besides, in terms of uniqueness rate, ROADGEN signifi-
cantly outperforms RAND by 19.3% on average. In the four
groups of experiments with road scenario size ranging from
5 to 8, the uniqueness rate of ROADGEN fluctuates between
0.5 and 0.7. However, in the group of experiments with road
scenario size setting to 4, ROADGEN exhibits a relatively low
uniqueness rate. This also holds for RAND. It is because the
fewer the number of used road components, the more likely
the generated road scenarios will have a higher similarity.

Detailed Results over Time. Fig. 3 illustrates a detailed
comparison over time between ROADGEN and RAND when
road scenario size is set to 5 and 7 in terms of the number of

700
—— RAND (Uniqueness) RAND (Number)

ROADGEN (Uniqueness) W88 ROADGEN (Number) 600

500
il
)

400

300

Uniqueness Rate
s
3
3

200

100

Number of Deduplicated Road Scenarios

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)

(b) 7 Road Components

The Number of Deduplicated Road Scenarios and Uniqueness Rate of ROADGEN and RAND over Time

—— ROADGEN (4 Components)
~—— ROADGEN (5 Components)
—— ROADGEN (6 Components)
—— ROADGEN (7 Components)
ROADGEN (8 Components)
RAND (4 Components)
RAND (5 Components)
RAND (6 Components)
RAND (7 Components)
RAND (8 Components)

Number of Covered Road Components

Time (hour)

Fig. 4. Comparison of Time for Covering Different Road Components

deduplicated road scenarios and the uniqueness rate. Due to
space limitation, we provide the results when road scenario
size is set to 4, 6 and 8 at our website.

Specifically, in the early stages of generation, the number
of deduplicated road scenarios generated by ROADGEN is
smaller than that of RAND. This is because ROADGEN con-
sumes more time than RAND due to our guidance computa-
tion, and thus generates a smaller number of road scenarios
before deduplication. However, as time goes by, the number
of covered road components increases, and RAND gradually
generates more duplicated road scenarios, and thus its dedu-
plicated road scenarios are gradually less than those gener-
ated by ROADGEN. This results in a gradual decline in the
uniqueness rate, while the difference between ROADGEN and
RAND becomes more significant.

Time for Covering Road Components. Fig. 4 presents
the number of different road components covered by gener-
ated road scenarios over time. The solid lines represent the
five groups of experiments of ROADGEN, and the dashed
lines represent the five groups of experiments of RAND.

Specifically, ROADGEN respectively spends 0.89, 1.34,
1.40, 1.23 and 1.38 hours to cover all the 242 road compo-
nents when road scenario size is respectively set to 4, 5, 6, 7
and 8, while RAND respectively costs 4.53, 10.57, 8.61, 6.64
and 8.42 hours. On average, ROADGEN spends 1.24 hours
to cover all the 242 road components, while RAND costs
7.75 hours; i.e., ROADGEN is 83.9% faster than RAND in
covering all the 242 road components.

Summary. These results indicate that our guided approach
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TABLE 11
SUCCESS RATE OF COMPILING SCRIPTS INTO 3D SCENE FILES

Road Scenario Size  Total Number  Sample Size  Success Rate

4 Road Components 400 196 96%
5 Road Components 580 231 96%
6 Road Components 549 226 95%
7 Road Components 571 230 93%
8 Road Components 458 228 92%

ROADGEN is effective in generating more diverse road sce-
narios in the same time than the baseline random approach,
and covers all the different road components more quickly.

C. Usefulness Evaluation (RQ2)

Due to the large number of road scenarios in the format of
MATLAB scripts generated in RQ1, we evaluate their use-
fulness by a sampling approach. Specifically, we set the con-
fidence level to 95% and the margin error to 5% to determine
the sample size, and randomly sample road scenarios gen-
erated by ROADGEN in RQ1. The third column of Table II
reports the sample size under each road scenario size.

Usability of 3D Scenes. We leverage RoadRunner to com-
pile the sampled road scenario scripts into 3D scene files. The
last column of Table II lists the success rate of compilation.
Specifically, more than 92% of the road scenarios scripts can
be successfully compiled into 3D scene files. We investigate
the cases where compilation fails, and find that it is caused
by the excessive curvature of certain U-shaped road compo-
nents. We will address this issue in future updates. Moreover,
we validate all 3D scene files using the built-in scenario sim-
ulation tool in RoadRunner, and the vehicles included therein
are able to recognize lane markings, and perform path plan-
ning, lane changes and other behaviors with all 3D scene
files. One sample demonstration is illustrated in Fig. 5(a).

Usability of HD Maps. We utilize RoadRunner to convert
those sampled road scenario scripts, which are successfully
compiled into 3D scene files, into HD map files for the latest
Apollo 8.0. We import these HD map files into Apollo, and
restart Dreamview (i.e., Apollo’s fullstack HMI service) to
load the HD maps. We determine the usability of HD maps
through manual verification, i.e., running the routing testing
in Apollo’s built-in sim-control mode, which does not require
any third-party simulators. We set points of interest in sim-
control, and let Apollo conduct path planning. All HD map

(b) Demonstration of HD Maps

(c) Demonstration of Joint Simulation

A Case Study that Demonstrates the Usability of 3D Scene Files and HD Maps and the Usability for Joint Simulation

files are successfully used in routing testing in sim-control
mode. One sample demonstration is shown in Fig. 5(b).
Usability for Joint Simulation. We first import each 3D
scene file into Unity, and manually set the SpawnInfo which
contains the starting position and end position of a target ve-
hicle. Then, we import the resulting scene binary file called
AssetBundle into SORA-SVL, and bridge it with Apollo 8.0.
We use the SORA-SVL’s Python API to start joint simulation
in Dreamview and SORA-SVL. All the joint simulations are
successful. One sample demonstration is shown in Fig. 5(c).
Summary. These results indicate that more than 92% of
the generated road scenarios are useful for joint simulation.

D. Limitations

While the proposed approach demonstrates promising re-
sults, it still suffers several limitations. First, we define eight
types of typical road components, which is not meant to be
exhaustive but is to illustrate the feasibility of our approach.
We plan to further extend the types of road components ac-
cording to regulations in different countries.

Second, we currently only focus on the road-level scenario
(i.e., layer 1 of the 5-layer model [1]) without taking into ac-
count traffic signs, static and dynamic objects, etc. in the up-
per layers. We are integrating these elements into ROADGEN.

Third, we evaluate the usefulness of ROADGEN only on
SORA-SVL with Apollo. However, RoadRunner supports the
export of HD map files and 3D scene files in various formats
required by various simulators and autonomous driving sys-
tems. We believe that ROADGEN is still applicable in other
simulators and autonomous driving systems.

V. CONCLUSIONS

This paper propose ROADGEN to systematically generate
diverse road scenarios in both topology and geometry. First,
eight types of typical road components are defined and imple-
mented. Then, ROADGEN uses a guided algorithm to connect
road components to generate road scenarios, and uses a simi-
larity metric to remove duplicated road scenarios. Our experi-
mental results have demonstrated the promising effectiveness
and usefulness of ROADGEN in generating diverse road sce-
narios for joint simulation. Our dataset of road scenarios is
also released for fostering simulation testing. In the future,
we plan to extend ROADGEN to support more types of road
components and integrate upper-layer scenario elements, and
investigate the applicability of ROADGEN in other simulators
and autonomous driving systems.
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