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ABSTRACT

Autonomous vehicle technology has been vigorously developed in the
last decadeswith recent advances in sensing and computing technol-
ogy. There is an urgent need to ensure the reliability and robustness
of autonomous driving systems (ADSs). Despite the recent achieve-
ments in automatically testing various modules of ADSs, little atten-
tion has been paid on the automated testing of traffic light detection
models in ADSs. A common practice is to manually collect and label
traffic light data. However, it is labor-intensive, and even impossible
to collect diverse data under different driving environments.

To address these problems, we propose and implementTigAug to
automatically augment labeled traffic light images for testing traffic
light detection models in ADSs. We construct two families of meta-
morphic relations and three families of transformations based on a
systematic understanding of weather environments, camera proper-
ties, and traffic light properties. We use augmented images to detect
erroneous behaviors of traffic light detectionmodels by transformation-
specificmetamorphic relations, and to improve the performance of traf-
fic light detectionmodels by retraining. Large-scale experimentswith
four state-of-the-art traffic light detection models and two traffic
light datasets have demonstrated that i) TigAug is effective in test-
ing traffic light detection models, ii) TigAug is efficient in synthesiz-
ing traffic light images and retraining models, and iii) TigAug gen-
erates traffic light images with acceptable naturalness.

1 INTRODUCTION

Academic and industrial efforts have been increasingly devoted to
vigorously developing autonomous vehicle technology in the last
decades. These developments have been fueled by recent advances in
sensing and computing technology together with the impact on au-
tomotive transportation and the benefit to society (e.g., reducing ve-
hicle collisions, providing personal mobility to disabled people, and
reducing ill effects of driving stress) [41]. The automation system of
autonomous vehicles, also known as autonomous driving system
(ADS), is typically organized into twomain parts, i.e., the perception
system and the decision making system [6]. The perception system
estimates the vehicle and environment state using the data captured
by on-board sensors such as camera, LIDAR, RADAR andGPS, while
the decision making system navigates the vehicle from its initial
position to the final destination specified by the user.

As a safety-critical system, it is important to ensure the reliability
and robustness of an ADS. Unfortunately, the state-of-the-practice
ADSs from leading companies such as Tesla, Waymo and Uber are
still vulnerable to corner cases and exhibit incorrect behaviors, due
to the extremely complicated and diverse real-world driving envi-
ronments. These incorrect behaviors might lead to catastrophic con-
sequences and unsustainable losses, as evidenced by many reported
traffic accidents [5, 27, 39]. Therefore, on-road testing is adopted by
these leading companies to achieve quality assurance for ADSs. To
further test extreme conditions or corner cases that are difficult or

expensive to produce in real-world environments, simulation test-
ing is also widely adopted by these leading companies [24, 26].

In recent years, many testing approaches have been developed by
the software engineering community to ensure the reliability and ro-
bustness of ADSs. Specifically, one main line of work attempts to ap-
ply search-based testing to detect safety violations for ADSs [1, 2, 9,
17, 18, 21, 32, 50, 54, 60]. They formulate a test scenario as a vector of
variables (e.g., vehicle speed and fog degree), and apply generic algo-
rithms to search for test scenarios that violate safety requirements.
Another main thread of work focuses on testing DNN (deep neural
network)-based modules in ADSs. They use metamorphic testing to
generate images of driving scenes [43, 49, 56, 57] and point clouds of
driving scenes [20]. For example, DeepTest [56] uses weather trans-
formations (e.g., adding rain effect) and affine transformations (e.g.,
translation) to synthesize images for testing steering angle decision
models in ADSs. Similarly, LiRTest [20] applies weather transfor-
mations and affine transformations to synthesize point clouds for
testing 3D object detection models in ADSs.

Despite these advances in finding erroneous behaviors in various
modules of ADSs, little attention has been paid on the testing of traf-
fic light detection models in ADSs. Traffic lights are used to control
the movement of traffic, and thus play an important role in ensuring
traffic safety. Therefore, ADSs employ traffic light detection models
(e.g., YOLO [45], Faster R-CNN [46], and SSD [35]) to detect the po-
sition of one or more traffic lights in the driving scene (e.g., repre-
sented in an image) and recognize their states (e.g., red, green, and
yellow) [6]. When an ADS fails to correctly recognize traffic lights,
it may cause serious traffic accidents. For example, Tesla’s Autopilot
misidentified the moon as a yellow light, causing the vehicle to un-
expectedly slow down at highway speeds [31]. Uber’s autonomous
vehicle passed through a red light three seconds after the light had
turned red and while a pedestrian was in the crosswalk [4]. There-
fore, it is crucial to specifically test traffic light detection in ADSs.

The testing of traffic light detection heavily relies on the labeled
traffic light data (i.e., images of traffic lights), which is usually man-
ually collected. Specifically, on-road testing is employed to capture
images of traffic lights via cameras. However, it is resource-intensive
or even impossible to collect diverse data under different driving en-
vironments. Then, the captured traffic light images are manually
labeled to mark the position and state of traffic lights. However, it
is a labor-intensive and time-consuming task, especially when the
number of traffic light images increases. To the best of our knowl-
edge, Bai et al.’s work [7] is the first and only work to automatically
generate synthetic images of traffic lights. However, they only con-
sider one transformation scenario, i.e., changing the color of traffic
lights, hindering the diversity of generated traffic light images and
hurting the effectiveness of traffic light detection testing.

To address these problems, we propose and implement a system-
atic data augmentation approach, named TigAug, to automatically
augment labeled traffic light images for testing traffic light detection
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Figure 1: Approach Overview of TigAug

models in ADSs. Specifically, we systematically construct two fami-
lies of metamorphic relations and three families of transformations
based on a systematic understanding of weather environments, cam-
era properties, and traffic light properties. Given a labeled traffic
light image from real world, TigAug applies transformations to syn-
thesize augmented traffic light images. Then, it uses transformation-
specific metamorphic relations between the real-world image and
those augmented images to identify erroneous behaviors of traffic
light detection models in ADSs. Moreover, the augmented images
can be used to retrain and improve traffic light detection models.

We conduct large-scale experiments to evaluate TigAug, using
four state-of-the-art traffic light detection models and two traffic
light datasets. First, we apply transformations on the testing data,
and the mean average precision of the original models suffers a de-
crease of 40.5% on the augmented testing data. Second, we obtain re-
trainedmodels by adding augmented training data, and themean av-
erage precision of the retrainedmodels achieves an increase of 50.7%
on the augmented testing data. These results demonstrate that
TigAug is effective in detecting erroneous behaviors and improving
the performance of traffic light detection models in ADSs. Third, we
measure the time overhead of data augmentation and retraining to
evaluate the efficiency of TigAug, and it takes on average 0.88 sec-
onds to synthesize an image and 14 hours to retrain a model, which
is acceptable given the improved mean average precision. Finally,
we manually identify unnatural images from the synthesized im-
ages, and 27.9% of the synthesized images from each transformation
are considered as unnatural, but they have little impact on model
performance. This result indicates that our synthesized traffic light
images can be directly used without manual cleaning.

In summary, this work makes the following contributions.

• We constructed two families of metamorphic relations and three
families of transformations to simulate the impact of weather en-
vironments, camera properties and traffic light properties on the
captured traffic light images in real-world driving environments.

• We implemented the proposed approach as a prototype tool, named
TigAug, to automatically augment traffic light images for detect-
ing erroneous behaviors and improving the performance of traffic
light detection models in ADSs.

• We conducted large-scale experiments, using four state-of-the-
art traffic light detection models and two traffic light datasets, to
demonstrate the effectiveness and efficiency of TigAug.

2 METHODOLOGY

We design and implement TigAug as a systematic data augmenta-
tion approach to automatically augment labeled traffic light images
for testing traffic light detection models in ADSs. Fig. 1 presents an
approach overview of TigAug. It is built upon our domain under-
standing of howweather environments, camera properties, and traf-
fic light properties affect the traffic light images captured by cam-
eras in real-world environments. In other words, we construct two
families of metamorphic relations (see Sec. 2.1) and three families of
transformations (see Sec. 2.2) with respect to weather environments,
camera properties, and traffic light properties.

On the basis of our domain analysis,TigAug first applies transfor-
mations on labeled traffic light data from real world (i.e., real-world
data) to generate augmented traffic light data (i.e., augmented data).
Then, TigAug uses transformation-specific metamorphic relations
between the real-world testing data and those augmented testing
data to identify erroneous behaviors of traffic light detection models
trained from real-world training data. Moreover, TigAug retrains
traffic light detection models by adding augmented training data to
real-world training data so as to improve model performance.

2.1 Metamorphic Relations

Akey challenge of traffic light data augmentation is to automatically
determine the expected output of traffic light detection models on
the augmented data.Metamorphic relations are known to be capable
of alleviating this test oracle challenge [11, 48]. In our scenario, each
metamorphic relation describes a property between the outputs of
traffic light detection models on the real-world traffic light data and
the augmented traffic light data. Specifically, for the three families of
transformations (see Sec. 2.2), we build two families of metamorphic
relations. Before elaborating the metamorphic relations, we first for-
mulate relevant notations. For a traffic light image 𝑖 from real-world
data I, the output of a traffic light detection model𝑚 on 𝑖 is denoted
as𝑚[[𝑖]]; and the augmented image after applying a transformation
𝜏 from weather transformationsW, camera transformations C or
traffic light transformations L is denoted as 𝜏 (𝑖).

Then, we formulate the metamorphic relation for weather and
camera transformations by Eq. 1,

∀ 𝑖 ∈ I ∧ ∀ 𝜏 ∈ W ∪ C, E{𝑚[[𝑖]],𝑚[[𝜏 (𝑖)]]} (1)
where E is a criterion asserting the equality of detection outputs on
real-world image and augmented image. This metamorphic relation
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Figure 2: Sample Traffic Light Images Synthesized by Our Transformations

indicates that no matter how weather conditions and camera effects
are synthesized into a real-world image by applying weather and
camera transformations, the detection output of a traffic light detec-
tionmodel on the augmented image 𝜏 (𝑖) is expected to be consistent
with that on the corresponding real-world image 𝑖 . For example, if
the snow effect or the overexposure effect is synthesized into a real-
world image 𝑖 to generate an augmented image 𝑖 ′, the position and
state of traffic lights in 𝑖 are the same to those in 𝑖 ′, and hence the de-
tection output on 𝑖 and 𝑖 ′ should be identical. Otherwise, erroneous
behaviors are revealed by violating this metamorphic relation.

Similarly, we formulate the metamorphic relation for traffic light
transformations by Eq. 2.

∀ 𝑖 ∈ I ∧ ∀ 𝜏 ∈ L, E{𝜏 (𝑚[[𝑖]]),𝑚[[𝜏 (𝑖)]]} (2)
This metamorphic relation indicates that as the position and state of
traffic lights are changed by applying traffic light transformations, the
detection output of a traffic light detection model on the augmented
image 𝜏 (𝑖) is expected to be correspondingly changed by applying
the transformation 𝜏 to the detection output on the corresponding
real-world image 𝑖 . For example, if the state of a traffic light in a real-
world image 𝑖 is changed from red to green to synthesize an aug-
mented image 𝑖 ′, the detection output on 𝑖 ′ should be identical to
that applying the same color change to the detection output on 𝑖 .

Finally, we use mean average precision (mAP) to derive the equal-
ity criterion E because mAP is commonly used to evaluate object de-
tection systems and it can compensate small drift of detected bound-
ing boxes from the ground truth bounding box. Specifically, mAP is
the mean of average precision (AP) scores of different object classes
(e.g., different traffic light states in our scenario). AP is computed by

the area under the precision-recall curve [15]. Therefore, AP takes
into account both precision and recall. To compute precision and
recall, intersection over union (IoU) is used to measure the overlap
between the detected bounding box and the ground truth bounding
box. If IoU is greater than a threshold 𝜃 (e.g., 0.5), the detection is
classified as a true positive; otherwise, the detection is classified as a
false positive. To take into account the impact of 𝜃 , mAP@[.50,.95] is
used to compute the average of mAP under 10 IoU thresholds from
0.50 to 0.95 with a step size of 0.05 [34]. Hereafter, we use mAP to
simplify mAP@[.50,.95] for the ease of presentation.

2.2 Transformations

In order to obtain more traffic light data exploring the input-output
spaces of traffic light detection models with less labor and time cost,
we implement twelve transformations to generate synthesized data
that is close to real-world data in a small amount of time. As shown
in Fig. 1, these transformations are rain (RN), snow (SW), fog (FG),
lens flare (LF), overexposure (OE), underexposure (UE), motion blur
(MB), changing color of traffic lights (CC), moving position of traffic
lights (MP), adding traffic lights (AD), rotating traffic lights (RT), and
scaling traffic lights (SC). These transformation are classified into
three families, i.e., weather transformations (to mimic the effects of
different weather environments), camera transformations (to simu-
late different camera effects), and traffic light transformations (to
enrich different positions and states of traffic lights).

Before we clarify the detailed definition and design of each trans-
formation in each family, we first formulate relevant notations. For
a real-world traffic light image, it contains a set of traffic lights

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2023, 17-21 July, 2023, Seattle, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} with corresponding labels 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑛}. The
label 𝑙 of a traffic light 𝑡 is denoted as a 5-tuple ⟨𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑠𝑡𝑎𝑡𝑒⟩,
where 𝑥1,𝑦1, 𝑥2 and𝑦2 are used to represent the bounding box of the
traffic light (i.e., a rectangular region around the traffic light within
the image), and 𝑠𝑡𝑎𝑡𝑒 represents the state of the traffic light (e.g., a
stop state for a red traffic light). 𝑥1 and𝑦1 are the x and y coordinate
of the top left corner of the bounding box, and 𝑥2 and 𝑦2 are the x
and y coordinate of the bottom right corner of the bounding box.

Weather Transformations. Autonomous vehicles drive in dif-
ferentweather environments, whichmay partially block traffic lights
or reduce the visibility of traffic lights. For example, snowflakes or rain-
drops may happen to block traffic lights when the on-board camera
captures the image. Therefore, weather environments may chal-
lenge the performance of traffic light detection. To simulate different
weather environments, we design four transformations, i.e., rain
(RN), snow (SW), fog (FG) and lens flare (LF). We use the image aug-
mentation Python library imgaug [25] to realize RN, SWand FG. The
basic idea is to generate and superimpose a layer of perturbation on
each pixel of the image tomimicweather conditions. Specifically, for
RN, we set the𝑑𝑟𝑜𝑝_𝑠𝑖𝑧𝑒 parameter to (0.1, 0.2) to control the size of
raindrops, and set the 𝑠𝑝𝑒𝑒𝑑 parameter to (0.2, 0.3) to control the
density of raindrops. For SW and FG, we set the 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 parameter
to 2 to control the concentration of the fog or snow. Besides, we use
Adobe Photoshop to realize LF, which mimics the dazzling light ef-
fect captured by the camera. Specifically, we compose a new lens
flare layer provided by Adobe Photoshop on the real-world traffic
light image whose brightness and contrast are automatically ad-
justed [3]. Fig. 2(a-h) shows some sample traffic light images syn-
thesized by our four weather transformations.

Camera Transformations. It is well known that the quality of
the images taken by on-board cameras may affect the performance
of traffic light detection models. Due to various models of on-board
cameras and their various ages and degrees of damage, the image
captured by cameras may not have a good quality (e.g., overexpo-
sure or underexposure). Moreover, autonomous vehicles may run at
a high speed or turn at intersections, which might blur the captured
images to some extend. To simulate such camera effects, we develop
three transformations, i.e., overexposure (OE), underexposure (UE)
and motion blur (MB). Similar to weather transformations, we use
the library imgaug [25] to realize OE, UE and MB. For OE and UE,
the image brightness is linearly adjusted by adjusting the lightness
in the HSL color space, and we set the 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 parameter to 4 and 1
to control the degree of exposure for simulating overexposure and
underexposure respectively. For MB, a filter that uses a kernel is ap-
plied on an image through convolution, we set the kernel size pa-
rameter𝑘 to 15 to control the degree of blur (i.e., a kernel size of 15×
15 pixels is used). Fig. 2(i-n) illustrates some sample traffic light
images synthesized by our three camera transformations.

Traffic Light Transformations. Traffic lights may have differ-
ent states and be placed at different positions in real world. To enrich
the diversity of positions and states of traffic lights in images, we
design five traffic light transformations, i.e., changing color of traf-
fic lights (CC), moving position of traffic lights (MP), adding traffic
lights (AD), rotating traffic lights (RT) and scaling traffic lights (SC).

• CC is designed to change the color of traffic lights in an image.
Specifically, we randomly select a subset of traffic lights 𝑇 ⊆ 𝑇 ,

and locate each traffic light 𝑡𝑖 in𝑇 according to its bounding box
and extract it (i.e., the region corresponding to the bounding box
is blank after extraction). Then, we use content-aware patch pro-
vided by Adobe Photoshop to fill the blank region. Next, we use
theHSV color space to change the hue of the extracted traffic light
so that red becomes green and green becomes red, and also cor-
respondingly change the traffic light state, i.e., 𝑙𝑖 .𝑠𝑡𝑎𝑡𝑒 . Then, we
flip the extracted traffic light upside down to ensure that the red
light bulb is on the top or left of the traffic light. Finally, we use
image fusion algorithm (e.g., Poisson blending) to paste the trans-
formed traffic light back to the original region.

• MP aims to move the position of traffic lights in an image. Similar
to CC, for each 𝑡𝑖 ∈ 𝑇 ⊆ 𝑇 , we extract 𝑡𝑖 and patch the blank re-
gion. Then, we paste 𝑡𝑖 to a new position by a horizontal offset 𝛿
(here we set 𝛿 to the width of the bounding box). Finally, we mod-
ify the bounding box coordinates in 𝑙𝑖 as follows.

𝑙𝑖 .𝑥1 � 𝑙𝑖 .𝑥1 + 𝛿, 𝑙𝑖 .𝑥2 � 𝑙𝑖 .𝑥2 + 𝛿

• AD is designed to add traffic lights to an image. The number of
newly added traffic lights is a random number between one and
half of the original number of traffic lights. The basic idea is to copy
original traffic lights and paste them to the image. In that sense,
AD is similar to MP. The only difference is that here we do not
patch the original traffic lights but keep them.

• RT aims to rotate traffic lights in an image so that horizontal traf-
fic lights become vertical and vertical traffic lights become hori-
zontal. Similar to CC, for each 𝑡𝑖 ∈ 𝑇 ⊆ 𝑇 , we extract 𝑡𝑖 and patch
the blank region. Then, we determine the center of 𝑡𝑖 , i.e., (𝑥𝑐 , 𝑦𝑐 )
= ( 𝑙𝑖 .𝑥1+𝑙𝑖 .𝑥22 ,

𝑙𝑖 .𝑦1+𝑙𝑖 .𝑦2
2 ). In order to ensure that the red light

bulb is on the top or left of the traffic light and the green light
bulb is located at the bottom or right of the traffic light, we rotate
𝑡𝑖 by 90 degrees clockwise around the center if it is a horizontal
traffic light, and we rotate it by 90 degrees counterclockwise if it
is a vertical traffic light. Finally, we paste the transformed traf-
fic light at the center of the original region, and correspondingly
modify the bounding box coordinates in 𝑙𝑖 as follows.

𝑙𝑖 .𝑥1 � 𝑥𝑐 − 𝑙𝑖 .𝑦2 − 𝑙𝑖 .𝑦1
2

, 𝑙𝑖 .𝑦1 � 𝑦𝑐 − 𝑙𝑖 .𝑥2 − 𝑙𝑖 .𝑥1
2

𝑙𝑖 .𝑥2 � 𝑥𝑐 + 𝑙𝑖 .𝑦2 − 𝑙𝑖 .𝑦1
2

, 𝑙𝑖 .𝑦2 � 𝑦𝑐 + 𝑙𝑖 .𝑥2 − 𝑙𝑖 .𝑥1
2

• SC is designed to scale the size of traffic lights to mimic the effect
of taking the image from a greater distance. We implement SC
with the help of the batch processing function of Adobe Photo-
shop. First, we import each image into Adobe Photoshop and ex-
pand the canvas according to its original size (e.g., increase the
width by 320 pixels and the height by 180 pixels for a 16:9 image).
Then, we fill the expanded region with uni-color and patch it us-
ing the image inpainting technique in Adobe Photoshop. Finally,
we scale the new image to its original size. Due to the scaling,
the bounding box of each traffic light is scaled correspondingly
as follows, where𝑤 and ℎ denote the original width and height
of the bounding box, and (𝑥𝑐 , 𝑦𝑐 ) denotes the center.

𝑙𝑖 .𝑥1 � 𝑥𝑐 − ( 𝑙𝑖 .𝑥2 − 𝑙𝑖 .𝑥1
2

× 𝑤

𝑤 + 320
), 𝑙𝑖 .𝑦1 � 𝑦𝑐 − ( 𝑙𝑖 .𝑦2 − 𝑙𝑖 .𝑦1

2
× ℎ

ℎ + 180
)

𝑙𝑖 .𝑥2 � 𝑥𝑐 + ( 𝑙𝑖 .𝑥2 − 𝑙𝑖 .𝑥1
2

× 𝑤

𝑤 + 320
), 𝑙𝑖 .𝑦2 � 𝑦𝑐 + ( 𝑙𝑖 .𝑦2 − 𝑙𝑖 .𝑦1

2
× ℎ

ℎ + 180
)

Fig. 2(o-x) reports some sample traffic light images synthesized
by our five traffic light transformations.
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3 EVALUATION

We first introduce the research questions of evaluating TigAug, and
then elaborate our evaluation setup, and finally present our results.

3.1 Research Questions

We design the following four research questions to evaluate the ef-
fectiveness and efficiency of TigAug.
• RQ1Robustness Evaluation: How effective are our augmented

traffic light images in identifying erroneous behaviors of existing
traffic light detection models using our metamorphic relations?

• RQ2 Retraining Evaluation: How effective are our augmented
traffic light images in improving the performance of existing
traffic light detection models via retraining?

• RQ3EfficiencyEvaluation: How is the time overhead of TigAug
with respect to synthesizing images and retraining models?

• RQ4 Naturalness Evaluation: How is the naturalness of aug-
mented traffic light images, and does it affect the performance
of existing traffic light detection models?
RQ1 is designed to detect potential erroneous behaviors in exist-

ing traffic light detection models via investigating the performance
difference between augmented testing data and real-world testing
data against the models trained from real-world training data. RQ2
aims to analyze the potential performance improvement after re-
training themodels with augmented training data resulted from twelve
transformations. Specifically, we investigate the performance differ-
ence for both real-world testing data and augmented testing data.
RQ3 is designed to analyze the time cost of applying transforma-
tions as well as the time cost of retraining models. We aim to in-
vestigate the practical cost of TigAug’s effectiveness in detecting
erroneous behaviors and improving model performance. RQ4 aims
to assess the naturalness of augmented images by manually inspect-
ing and excluding “unnatural” images in order to make the rest of
them resemble real-world images. We further investigate how the
cleaned augmented data affect the model performance.

3.2 Evaluation Setup

We run our evaluation with two traffic light datasets and four state-
of-the-art traffic light detection models.

Datasets.We select two datasets, i.e., LISA1 [22, 44] and Bosch2 [8].
They are two of the most popular datasets in autonomous driving
research area. LISA consists of continuous testing and training video
sequences collected in California, USA. The sequences are captured
by a stereo camera mounted on the roof of a vehicle driving under
both night and daytime with varying light and weather conditions.
The original LISA dataset totals 43,007 images and 113,888 anno-
tated traffic lights. Meanwhile, the original Bosch dataset contains
13,427 images and about 24,000 annotated traffic lights. The annota-
tions include bounding boxes of traffic lights as well as the current
state of each traffic light. We filter monochrome images from the
original Bosch dataset. We also remove duplicated images from
both LISA and Bosch dataset. Moreover, we filter images with zero
traffic light according to annotated data. Finally, we obtain prepro-
cessed original datasets with a total number of 36,265 images and

1https://www.kaggle.com/datasets/mbornoe/LISA-traffic-light-dataset
2https://hci.iwr.uni-heidelberg.de/content/bosch-small-traffic-lights-dataset

109,475 annotated traffic lights in LISA as well as 10,300 images and
24,242 annotated traffic lights in Bosch. Each dataset is divided into
training data, validation data and testing data by 4:1:1. We use O to
represent these real-world datasets before augmentation.

To obtain augmented datasets for RQ1, RQ2 and RQ3, we apply
our twelve transformations on LISA and Bosch. As a result, we obtain
24 augmented datasets. We represent each augmented dataset using
its corresponding transformation name and a ‘+’ symbol; e.g., RN+
represents the augmented dataset after applying our RN transfor-
mation. Besides, to support naturalness evaluation in RQ4, two of
the authors manually inspect the “naturalness” of each transformed
image in 12 augmented datasets resulted from LISA. To reduce the
manual effort, we do not analyze the smaller dataset Bosch. The two
authors first conduct a pilot labeling on randomly sampled 6,000
images to determine whether the transformed image is “natural”. In
the cases where there is a conflict between the two authors, a third
author is involved to have a group discussion and reach agreements.
The process takes 3 more rounds until the Cohen Kappa coefficient
reaches 0.845. Finally, the two authors go through the remaining
augmented data to filter “unnatural” images. The whole procedure
takes 2 human-months. We represent each cleaned augmented data-
set after manual analysis using its corresponding transformation
name and a ‘-’ symbol; e.g., RN- represents the cleaned augmented
dataset after applying our RN transformation and manual cleaning.

Models.We choose four state-of-the-art traffic light detection
models, i.e., YOLOv53, YOLOX4, Faster R-CNN 5 and SSD6. Thesemod-
els are widely used in autonomous driving research [8, 28, 33, 40, 42].
Briefly, YOLO model and its generations (e.g., YOLOv3, YOLOv5 and
YOLOv8) [45] are cutting-edge and state-of-the-art models in a vari-
ety of tasks, including object detection, image segmentation and im-
age classification. We choose YOLOv5 because it is mature and sta-
ble. Further, YOLOX is a popular variant of YOLO, redesigned for
anchor-free as well as other improvements for better performance.
Faster R-CNN [46] is an object detection framework based on deep
convolutional networks including a region proposal network and
an object detection network. Both networks are trained for sharing
convolutional layers for fast testing. SSD [35] is implemented based
on a single shot multi-box detector.

For RQ1, we obtain eight original models by training the four
models YOLOv5, YOLOX, Faster R-CNN and SSD with the two origi-
nal training datasets from LISA and Bosch. For RQ2 and RQ3, we
obtain 96 retrained models by retraining YOLOv5, YOLOX, Faster R-
CNN and SSD with the 24 augmented training datasets. Specifically,
to reduce the retraining time cost, we randomly choose 20% of each
augmented training dataset to merge into the original training data-
set. Notice that existing test case selection approaches [38] can be
used here to further improve the retraining effectiveness. For RQ4,
we obtain 24 retrained models by retraining YOLOv5 and YOLOX
with the 12 cleaned augmented training datasets from LISA. To align
with the retraining in RQ2 and RQ3, we first use the same 20% of
augmented training dataset and then add extra cleaned augmented
training samples if some of them are cleaned for “unnaturalness”.
Here we do not retrain Faster R-CNN and SSD because their training

3https://github.com/ultralytics/yolov5
4https://github.com/Megvii-BaseDetection/YOLOX
5https://github.com/ShaoqingRen/faster_rcnn
6https://github.com/amdegroot/ssd.pytorch
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(b) Results on the Bosch Dataset
Figure 3: mAP Comparison of the Original Models between Original and Augmented Testing Datasets
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Figure 4: Samples of Traffic Light Images Revealing Erroneous Behaviors Found by TigAug

time is much longer than YOLOv5 and YOLOX, and their detection
performance is much lower than YOLOv5 and YOLOX.

We distinguish between original models and retrained models
using the following notions. First, M-O represents an original model
where M is a notion for model and O represents the original training
dataset. Second, M-𝜏+ denotes a retrained model using augmented
training dataset by a transformation 𝜏 ∈ W ∪ C ∪ L. For example,
M-RN+ denotes the retrained model using augmented training data-
set by our RN transformation. Third, M-𝜏- denotes a retrainedmodel
using cleaned augmented training dataset by a transformation
𝜏 ∈ W ∪ C ∪ L after manual cleaning. For example, M-RN- denotes
the retrained model using cleaned augmented training dataset by
our RN transformation. Fourth, we also use concrete model’s names
to represent M. For example, YOLOX-O denotes the original YOLOX
model using the original training dataset; and YOLOX+ (resp. YOLOX-)
denotes the retrained YOLOX model using (resp. cleaned) aug-
mented training dataset without distinguish transformations.

Metric.We use mAP (a value between 0 and 1), as introduced
in Sec. 2.1, to measure the detection performance of models.

Environment.We conduct the experiments on a Ubuntu 20.04.4
LTS server with 4 NVIDIA GeForce RTX 3090 GPUs, Intel Core
i9-10980XE CPU with 3.00GHz processor and 128GB memory.

3.3 Robustness Evaluation (RQ1)

mAPDrops ofOriginalModels. Fig. 3 reports themAP of the orig-
inalmodels on the original and augmented testing datasets. ThemAP
of all the four models on the augmented testing datasets decreases
significantly across all the twelve transformations, when compared

with that on the original testing datasets. Such mAP drops indicate
that the original models are not robust to augmented images.

With respect to different models, YOLOv5, YOLOX, Faster R-CNN
and SSD respectively suffer an averagemAP drop of 31.4% (from 0.615
on the original testing dataset to 0.422 on the augmented testing
dataset), 32.8% (from 0.624 to 0.419), 55.4% (from 0.459 to 0.205), and
48.3% (from 0.315 to 0.163) on LISA across all transformations. Sim-
ilarly, they respectively suffer an average mAP drop of 41.3% (from
0.283 to 0.166), 30.5% (from 0.220 to 0.153), 48.4% (from 0.155 to 0.080),
and 36.2% (from 0.057 to 0.036) on Bosch. Moreover, YOLOv5, YOLOX,
Faster R-CNN and SSD respectively suffer amAP drop between 0.031
(for UE on Bosch) and 0.443 (for RT on LISA), 0.013 (for FG on Bosch)
and 0.464 (for RT on LISA), 0.026 (for UE on Bosch) and 0.388 (for FG
on LISA), and 0.005 (for UE on Bosch) and 0.212 (for RT on LISA).

With respect to different transformations, the mAP decreases by
40.7%, 41.8% and 38.1% on average for weather, camera and traffic
light transformations respectively. Specifically, the mAP decreases
most significantly for FG (an average drop of 50.3%) among the four
weather transformations, for MB (an average drop of 63.5%) among
the three camera transformations, and for RT (an average drop of
63.9%) among the five traffic light transformations.

Detected Erroneous Behaviors. We further analyze the erro-
neous behaviors detected by TigAug that violate metamorphic rela-
tions, and summarize the false positives and false negatives reported
by the original models on augmented testing datasets. Fig. 4 shows
samples of traffic light images revealing erroneous behaviors. All
transformations from the three families reveal erroneous behaviors.
On one hand, regarding weather and camera transformations, there
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Figure 5: mAP Comparison between Original and Retrained Models on the Original Testing Datasets
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Figure 6: mAP Comparison between Original and Retrained Models on the Augmented Testing Datasets

are three kinds of erroneous behaviors. First, the original model fails
to detect a traffic light, resulting in a false negative, as illustrated by
Fig. 4(a) and 4(b). Second, the original model predicates a false label
for a traffic light, resulting in a false positive, as illustrated by Fig.
4(c) and 4(d). Third, the original model recognizes a car’s back light
as a traffic light, resulting in a false positive, as shown by Fig. 4(e)
and 4(f). On the other hand, regarding traffic light transformations,
there are also three kinds of erroneous behaviors. First, the original
model fails to detect a transformed traffic light, causing a false neg-
ative, as illustrated by Fig. 4(g) and 4(h). Second, the original model
detects a transformed traffic light successfully, but fails to detect
the unchanged traffic light or generates a wrong label, leading to
a false negative or false positive, as shown by Fig. 4(i) and 4(j).
Third, the original model detects a transformed traffic light, but
finds a bounding box that is far too different from the ground truth,
resulting in a false negative, as illustrated by Fig. 4(k) and 4(l).

Summary.All the fourmodels suffer a decrease inmAP on the
augmented testing datasets across all the twelve transforma-
tions on the two datasets. On average, the mAP of each model
decreases by 40.5%. Moreover, these models are more prone to
erroneous behaviors for weather and camera transformations
than for traffic light transformations. The average mAP drop
ranges from 17.1% for SC transformation to 63.9% for RT trans-
formation. Therefore, TigAug is effective in detecting erro-
neous behaviors for all models.

3.4 Retraining Evaluation (RQ2)

mAPChanges on the Original Datasets. Fig. 5 shows the mAP of
the original and retrained models on the original testing datasets.
Overall, the retrained models achieve a similar mAP as the original
models on the original testing datasets.

Specifically, with respect to retrained models, the average mAPs
of retrained YOLOv5, YOLOX and SSD models across all transforma-
tions reach 0.615, 0.628 and 0.325 on the original LISA testing dataset
(see Fig. 5(a)), which are slightly higher by 1.2% than those of the
original models. Only the average mAP of retrained Faster R-CNN
models become lower; i.e., the average mAP is 0.443, which is only
3.6% lower than the original model. Similarly, the average mAPs
of retrained YOLOv5, YOLOX and SSD models are 0.292, 0.224 and
0.064 on the original Bosch testing dataset (see Fig. 5(b)), which are
slightly higher by 5.6% than those of the original models. Only the
average mAP of retrained Faster R-CNN models is lower; i.e., the
average mAP is 0.153 (only 1.2% lower than the original model).

With respect to transformations, the average mAPs of retrained
models slightly increase for SW, FG, LF, OE, UE, MP, AD and SC
transformations, compared with the original models. SW trans-
formation causes a largest increase of average mAP by 2.6%. The
average mAPs of retrained models slightly decrease for RN, MB, CC
and RT transformations, compared with the original models. CC
transformation causes a largest decrease of average mAP by 1.5%.

mAP Changes on the Augmented Datasets. Fig. 6 reports the
mAP of the original and retrained models on the augmented testing
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Figure 7: Time Overhead of TigAug

datasets. Overall, all the retrainedmodels have a significantly higher
mAP than the original models on the augmented testing datasets.

Specifically, with respect to retrained models, the retrained Faster
R-CNN models obtain the highest improvement in the average mAP
among the four models, i.e., an average mAP improvement of 83.0%
and 47.1% on the augmented LISA and Bosch testing datasets. Mean-
while, the retrained YOLOv5, YOLOX and SSDmodels respectively have
an average mAP improvement of 40.2% and 43.3%, 46.2% and 37.0%,
and 63.9% and 44.7% on the augmented LISA and Bosch testing datasets.

With respect to transformations, RT transformation contributes
the most in improving the original models. It improves the average
mAP by 210.5% and 118.7% on the augmented LISA and Bosch testing
datasets, followed by FG transformation with an average mAP im-
provement of 193.5% and 59.6%. SC transformation contributes the
least improvement, i.e., an average mAP improvement of 6.4% and
13.6% on the augmented LISA and Bosch testing datasets.

Summary. Retrained models achieve similar mAP as original
models on the original testing datasets, but have significantly
higher mAP (i.e., 50.7% higher) than original models on the
augmented testing datasets. RT transformation contributes
the most in improving performance of original models. There-
fore, TigAug is effective in improving model performance by
feeding augmented data for model retraining.

3.5 Efficiency Evaluation (RQ3)

We first measure the time cost of transformations. The result is re-
ported in Fig. 7(a). Generally, TigAug takes less than 10 hours for 22
of the 24 transformation tasks except for two, i.e., CC on LISA and
SC on LISA, each of which takes around 30 hours. In total, TigAug
consumes 137 hours to generate 24 augmented datasets. On average,
TigAug takes 0.88 seconds to synthesize an image. Extremely, it
takes a maximal of 3.03 seconds to synthesize an image by CC.

Then, we further analyze the time cost of model retraining. We
measure each model’s average retraining time across all transforma-
tions with respect to LISA and Bosch datasets. The result is reported
in Fig. 7(b). Notice that we also report the training time of the orig-
inal models for comparison. YOLOv5 consumes the least retraining
time of less than 10 hours, while Faster R-CNN consumes the most
retraining time of more than 30 hours using the augmented LISA
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Figure 8: Number and Percentage of Unnatural Images

training datasets. This result also holds using the augmented Bosch
training datasets. Besides, retraining takes an average of 12.35%
more time than training the original models. In total, it takes 1,464
hours to train 8 original models using the original datasets and re-
train 96 models using the augmented datasets. On average, TigAug
takes 14 hours to retrain a model for improving performance.

Summary. On average, TigAug takes 0.88 seconds to synthe-
size an image, and takes 14 hours to retrain a model. Given the
effectiveness in detecting erroneous behaviors and improving
model performance, the time cost of TigAug is acceptable.

3.6 Quality Evaluation (RQ4)

Number andPercentage ofUnnatural Images.We report the num-
ber and percentage of unnatural images (identified in our manual
analysis) in each augmented dataset by a transformation in Fig. 8.
Specifically, TigAug generates the least number of unnatural im-
ages by five transformations, i.e., RN, OE, UE, MB and SC. Less than
10% of the augmented images by these transformations are consid-
ered as unnatural. For the remaining transformations, the percent-
age of unnatural images ranges from 32% to 56%. On average, 27.9%
of synthesized images by each transformation are considered as un-
natural. Consequently, the number of cleaned augmented testing
images is smaller than the number of original testing images by 1.3%
to 56.2% due to the removal of unnatural images. Given that there
are 6,166 original testing images, the cleaned augmented testing
datasets are believed to be still sufficient.
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Figure 9: mAP of the Original and Retrained Models on the Original LISA Testing Dataset
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Figure 10: mAP of the Original and Retrained Models on the Augmented and Cleaned Augmented LISA Testing Dataset

Impact ofUnnatural Images. Fig. 9 shows the result ofmAP com-
parisons among original models (i.e., the red bars), retrained models
inRQ2without removing unnatural data (i.e., the blue bars), and re-
trained models without unnatural data (i.e., the yellow bars) on the
original LISA testing dataset. Generally, these three kinds of models
achieve similar mAP, indicating that those unnatural data will not
affect models’ detection capability on original real-world data.

Furthermore, similar to Fig. 9, Fig. 10 reports the result ofmAP com-
parisons among these three kinds of models on the augmented LISA
testing dataset (denotedwith a ‘+’ symbol, e.g., RN+) as well as on the
cleaned augmented LISA testing dataset (denoted with a ‘-’ symbol,
e.g., RN-). First, the original models suffer a smaller mAP decrease
after removing unnatural data. This is reasonable as the original
models are not trained with such unnatural data. Second, on the aug-
mented testing datasets, retrained models without removing unnat-
ural data mostly have a slightly higher mAP than retrained models

without unnatural data; i.e., the blue bars are mostly higher than the
yellow bars. Hence, retrained models without removing unnatural
data seems more robust. Third, on the cleaned augmented testing
datasets, retrained models without removing unnatural data mostly
have similar mAP as retrained models without unnatural data. This
indicates that retraining models with those unnatural data will not
affect models’ capability on natural data.

Summary. 27.9% of synthesized images by each transforma-
tion are considered as unnatural. However, these unnatural
data, if used for retraining, will not affect models’ capability
on original real-world data and augmented natural data.

3.7 Threats to Validity

Dataset Selection. The quality and discrepancies of different driv-
ing environments in the datasets pose a threat to validity. To that
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end, we select two well-known datasets, i.e., LISA and Bosch, which
are widely used in the research community on autonomous driving
systems [8, 22, 44]. These datasets are collected in real-world envi-
ronments with varying light and weather conditions, and consist of
over 10k images and 20k annotated traffic lights. Therefore, both
datasets cover a wide scope of driving environments. We believe our
evaluation results could be generalized to other datasets.

Model Selection.The performance discrepancies of different traf-
fic light detection models affect the validity. To that end, we select
YOLOv5, YOLOX, Faster R-CNN and SSD to diversify the models and
our evaluation results. They are widely used in the research commu-
nity on autonomous driving systems [8, 28, 33, 40, 42]. We obtain
consistent results from these four models, indicating that they could
be generalized to other traffic light detection models.

Transformations. The parameter configuration in each trans-
formation is empirically set to synthesizemore natural images. There-
fore, our evaluation results might not generalize to other parameter
configurations. Besides, other transformationsmay exist in the three
families. We plan to continuously enlarge our transformation set.

Naturalness. Traffic light detection models are fed with real-
world images captured by cameras. The unnaturalness of synthe-
sized images threats the validity. To that end, we designRQ4 toman-
ually exclude unnatural images and further investigate their impact.
We find that the large part of unnatural images synthesized by SW
and FG are those that make traffic lights invisible. Thus, even human
beings cannot recognize the traffic lights, and it seems meaningless
for models to detect. For LF, most of the synthesized unnatural im-
ages are caused by adding lens flare to night images. We plan to im-
prove LF to not augment night images. For CC, MP, AD and RT, the
unnaturalness of their synthesized images is caused by the oversized
ground truth bounding box, which causes the fusion step to produce
unnaturalness. Besides, we find that the unnatural images seem not
affect models’ detection capability on natural data. Therefore, we
believe TigAug’s augmentation capability is useful. It is interesting
to investigate the correlation between unnatural data and bad data.

4 RELATEDWORK

We review the closely relatedwork in two areas: testing autonomous
driving systems and metamorphic testing for deep learning.

4.1 Testing Autonomous Driving Systems

Testing has been recognized as one of the challenges in software en-
gineering for autonomous driving systems [12, 29, 52]. Search-based
testing has been widely investigated to find safety violations for au-
tonomous driving systems [1, 2, 9, 17, 18, 21, 32, 50, 54, 60]. They of-
ten define a test scenario as a vector of multiple variables (e.g., vehi-
cle speed, pedestrian position, and fog degree), and apply generic al-
gorithms to search the input space for test scenarios that potentially
violate a set of safety requirements (e.g., the distance between the ve-
hicle and the pedestrian should be larger than a threshold). Differ-
ently, Tian et al. [55] generate safety-critical test scenarios by influ-
ential behavior patterns mined from real traffic trajectories.

Moreover, some advances have been made in testing DNN-based
modules in autonomous driving systems. Pei et al. [43] design a neu-
ron coverage-guidedmethod, DeepXplore, to generate images of driv-
ing scenes by changing lighting conditions and occlusion with small

rectangles. Tian et al. [56] also propose a neuron coverage-guided
approach, DeepTest, to generate images of driving scenes more sys-
tematically through a more complete set of transformations. Dif-
ferent from these two approaches, Zhang et al. [59] propose to use
generative adversarial network [19] to synthesize images of driving
scenes with various weather conditions. To work with dynamically
changing driving conditions, Zhou et al. [61] design DeepBillboard
to generate adversarial perturbations that can be patched on bill-
boards to mislead steering models. To test object detection models,
Wang and Su [57] and Shao [49] propose to generate images of driv-
ing scenes by inserting extra object into background images. To test
3D object detection models, Guo et al. [20] apply affine transforma-
tion and weather transformation to augment LiDAR point clouds.

Besides, Gambi et al. [16] combine natural language processing
with a domain-specific ontology to automatically generate car crash
scenarios from police reports. Secci and Ceccarelli [47] summarize
potential failure modes of a vehicle camera, and generate the corre-
sponding failed images to analyze their effects on autonomous driv-
ing systems. Deng et al. [13] slice a driving recording into segments,
reduce segment length by removing redundancy, and prioritize the
resulting segments based on coverage of driving scene features. De-
spite these recent advances, many testing challenges still remain to
better assure safety of autonomous driving systems [30, 37, 53].

To the best of our knowledge, except for Bai et al.’s work [7], none
of the previous work is focused on the testing of traffic light detec-
tionmodels.While Bai et al. [7] generate traffic light images by chang-
ing the color of traffic lights, our work introduces a more complete
set of transformations to augment traffic light images.

4.2 Metamorphic Testing for Deep Learning

As metamorphic testing [11, 48] can alleviate the test oracle prob-
lem, it has been widely used to test various deep learning systems
apart from autonomous driving systems. For example, Dwarakanath
et al. [14] usemetamorphic testing to identify implementation bugs in
image classifiers. Sun et al. [51] combinemutation testingwithmeta-
morphic testing to detect inconsistency bugs in machine translation
systems. Chen et al. [10] design a property-based method to validate
machine reading comprehension systems against seven metamor-
phic relations about different linguistic properties. Liu et al. [36] use
transformation-specific metamorphic relations with Gini impurity
guidance to test natural language understanding models of dialogue
systems. Ji et al. [23] introduce three transformation families, i.e.,
characteristics mutation, noises injection, and reverberation simu-
lation, based on metamorphic relations to test speech recognition
systems. Yu et al. [58] propose a metamorphic testing approach to
validate image captioning systems. Our work shares the same na-
ture with these approaches by adopting metamorphic testing, but
targets a different application domain of traffic light detection.

5 CONCLUSIONS

Wehave proposed and implemented a prototype tool, namedTigAug,
to automatically augment traffic light images for detecting erro-
neous behaviors and improving performance of traffic light detec-
tionmodels in ADSs.We conducted large-scale experiments to demon-
strate the effectiveness and efficiency of TigAug. Our tool and data
are available at https://zenodo.org/record/7645118/.
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